MEDICAL JOURNAL

José Carlos Costa Baptista-Silva, Miriam Sterman Dolnikoff, Luiz Antonio Ribeiro Moura, José Osmar Medina Pestana, Jose Gilberto Henriques Vieira, Fausto Miranda Jr, Nestor Schor, Clovis de Araujo Peres, Emil Burihan

Ligation of the left renal vein in epm1-wistar rats: functional and morphologic alterations in the kidneys, testes and suprarenal glands

Escola Paulista de Medicina - Universidade Federal de São Paulo (EPM-UNIFESP) - São Paulo, Brazil

Objective: The ligation of the left renal vein (LLVR) in man is a contraversial procedure in view of the risks of lesion to the renal parenchyma. With the objective of studying the morphologic and functional alterations caused by these lesions, we conducted experimental research with rats. **Material and Methods**: 64 male adult EPM1-WISTAR rats were used, divided into 8 groups - 4 for LLRV and four for control. Each LLRV group and corresponding control group were sacrificed progressively on the 7th, 15th, 30th and 60th day after the initial surgery. **Results**: We found morphofunctional alterations only in animals that underwent LLRV in the four periods of sacrifice. The proteinuria creatinine in serum, testosterone in serum and serum corticosterone in serum showed practically no alteration in relation to the normal values for rats. Statistically significant severe histological lesions were found in the kidneys and testes of the LLRV groups. Lesions in the suprarenal glands were also present in these groups, but no sufficient to demonstrate statistical significance **Conclusion**: Based on these results we can conclude that the ligation of the left renal vein is a procedure of high risk in these animals.

Uniterms: Renal Veins. Ligation. Kidneys. Testes. Suprarenal glands.

INTRODUCTION

Frequently, the surgeon finds himself in a difficult situation in relation to normal human anatomy. Due to the syntropy of the elements of the human body, a good surgical approach to a certain organ or segment of the body can sometimes cause damage to another element with significant repercussions. The left renal vein (LRV) due to its syntropy with the abdominal aorta, may hamper an ideal approach to that artery.¹

Adrress for correspondence: José Carlos Costa Baptista-Silva Rua Prof. Artur Ramos, 178, apto 123 Vega São Paulo/SP - Brasil - CEP 01454-904 As the LRV has many tributaries, many authors recommend its ligation or temporary section to facilitate the surgical procedure.²⁻²⁷ However, in the case of the right renal vein (RRV) which has no tributaries, its ligatation will certainly result in severe renal lesion, and consequently this procedure is forbidden.²⁸⁻³² The presence of multiple renal veins is most frequent on the right, which is shorter, drains into the cava and has no relationship to the aorta. The LRV is normally unique, longer, and crosses transversally in front of the aorta before draining into the inferior vena cava and generally receives three tributaries.²⁸⁻⁵²

Many complications have been published after the ligation of the left renal vein (LLRV), including loss of the renal function requiring hemodialysis, retroperitoneal hemorrhage, increase in creatinine levels, congestion of the renal vein, renal necrosis, rupture of the left kidney, thus increasing the patient's morbidity.^{2,9,10,11,14,34,44,53-70} To avoid renal complications^{71,74} reanastomosis has been recommended

as a routine after the section of the LRV. The blood flow to an organ decreases when the venous pressure nears the diastolic blood pressure.^{75,76} The LLRV enables the inversion of the venous flow and venous hypertension in the kidney, testes and suprarenal gland.^{8, 14, 21, 50, 60, 67, 77-89}

Baptista-Silva (1994)¹ in more than 200 surgeries of the aorta, never had the need to perform a ligature of LRV in elective surgery such as aneurysm emergencies or trauma to the aorta. In other words, when the approach to the aorta was difficult, he used other surgical techniques recommended by other authors,^{39, 53, 69, 71, 72, 87, 88, 90-103} to facilitate the dissection of the aorta and avoid a LLRV.

Many researchers, worried about the complications of LLRV and renal vein thrombosis, and interested in investigating varicocele developed experimental models in animals with similar clinical findings. Dogs and rats were used in these studies due to the similarity of their vascular anatomy, hemodynamic repercussion and immunology system to that of man. It was demonstrated that in dogs a LLRV increased 20 times the hilar renal venous pressure, reducing the renal arterial pressure, the thickening of the basal renal membrane, the high concentration of nephrotoxics antigen, proteinuria, hypoproteinemia, hypoalbuminemia, hypercholesterolemia, atrophy of the left kidney, arterial hypertension in the kidneys with renal congestion, reaction to immunocomplex with lesion of the right kidney and increase in mortality of animals.^{47, 75, 76, 83, 104-117}

Based on the current controversy in relation to renal lesion, and in the absence of literature on the incidence of lesion to the testes and suprarenal glands after the ligature of the left renal vein in man, we decided to research in rats the functional and histopathologic alterations caused by the LLRV in the kidneys, testes and suprarenal glands.

MATERIAL AND METHODS

Sixty four male adult EPM1-WISTAR rats were used, weighing around 264 to 469 grams, and were maintained under controlled light conditions from 6 A.M. to 6 P.M. and darkness from 6 P.M. to 6 A.M., at room temperature of $24\pm1^{\circ}$ C and free access to rat ration and water (1,118). The rats were randomized into 8 equal groups (8 animals each) - four groups for ligation of the left renal vein and four control groups. The groups were randomly chosen to be sacrificed on the 7th, 15th 30th and 60th day after initial surgery, always including one from the LIGATURE group (L7, L15, L30, L60) and one from the CONTROL group (C7, C15, C30, C60).

Table 1 Distribution of the rats per group, type of procedure and sacrifice day						
Groups	Nº	of Rats	Type of Procedure	Sacrifice day		
L7	8	{1a8}	"ligation"	7th		
C7	8	{9 a 16}	"control"	7th		
L15	8	{17 a 24}	"ligation"	15th		
C15	8	{25 a 32}	"control"	15th		
L30	8	{33 a 40}	"ligation"	30th		
C30	8	{41 a 48}	"control"	30th		
L60	8	{49 a 56}	"ligation"	60th		
C60	8	{57 a 64}	"control"	60th		

The rats were identified from 1 to 64. "INITIAL" referred to the first day of surgery and "SACRIFICE" to the last day of the experience. (Table 1).

The animals were submitted to anesthesia by inhalation of ethyl ether. A medianus laparotomy of about 3 cm was performed, with deviation of the intestinal loops to the right, opening of the retroperitoneal and careful dissection of the structures and ligature of the left renal vein close to the inferior vena cava, with a 7-0 monofilament polypropylene thread, preserving the renal drainage to the suprarenal, testicular and renolumbar veins. Closure of the abdominal wall was performed using a 3-0 cotton thread. A laparotomy was performed in the control group, as well as dissection of the LRV; threading and withdrawal of a monofilament polypropylene 7-0 thread under the LRV was conducted without ligation. The animals were weighed before surgery and after sacrifice and were always sacrificed by decapitation between 10 and 12 hrs. The animals were beheaded and the blood collected from the neck vessels placed in heparinized tubes and sent for biochemical analysis. After the beheading and collecting of blood, the animals were submitted to xiphopubic laparotomy, assessment of the abdominal condition, accurate exam of the intra and retroperitoneal organs. The kidneys, testes and suprarenal glands were examined, withdrawn and weighed (humid weight), and submitted to histological analysis by light microscopy.

Statistical analysis of the creatinine, testosterone, serum corticosterone and proteinuria was obtained by means of an experimental plan with two factors as sacrifice date with four levels (7th, 15th, 30th and 60th day) and surgery with two levels, ligation and control, and their values by variance analysis for an hierarchical model.¹¹⁹ The results of percentual variation between the weight of the animals and their kidneys, testes and suprarenal gland

São Paulo Medical Journal/RPM 115(4): 1475-1484, 1997

were analyzed using STUDENT t test¹²⁰; the histopathological results were analyzed using FISHER's exact test.¹²¹ The significant values were marked with an asterisk (*). The tests were performed at a 5% (p<0.05) level of significance.

RESULTS

The examination of the abdominal wall of the rats showed good cicatrization and no infection was detected. All the rats of the ligature and control groups were submitted to an exam of the intraperitoneal cavity and no visceral abnormalies were found. The alterations observed in the retroperitoneum were related to the size and color of the kidneys and suprarenal glands and main veins and tributaries. No thrombosis of the renal vessels and tributaries was observed either in the ligation or control groups.

The left kidneys of ligations were swollen and had a violet coloring by day 7 and 15, but on day 30 they had reduced in size and were more cyanotic. On the 60th day the reduction in size was more apparent and the coloring was darker with the left kidney showing an increase in size. The ligations of the LRV and their tributaries were always dilated.

The testes of ligation groups, to the left, the venous network was dilated; on the 60th day the left testis was always smaller than the right one.

The suprarenal glands were too small for the observation of macroscopic differences between them. The suprarenal venous network to the left of the ligation was enlarged compared to the control. (Fig 1, Table 2)

The results of the proteinuria, serum creatinine, serum testosterone and serum corticosterone were statistically different in some periods of the controls but did not exceed the values of normality for rats.

HISTOPATHOLOGY CHANGES BY LIGHT MICROSCOPY

Kidneys

In the ligature groups, we found severe lesions due to ischemia, classified as atrophy of the parenchyma, papilla necrosis, lesion of the distal tubuli, severe ischemia, infarction and necrosis of the kidneys of the rats sacrificed

 Table 2

 Absolute results of WEIGHT: Body (initial and sacrifice), of the Kidneys, Testes and Suprarenal glands.

 BIOCHEMICAL EXAMS: Proteinuria, Serum Creatinine, Serum Testosterone, Serum Corticosterone. GROUPS:

 L = Ligature, C = Control; and 7, 15, 30 e 60 refer to the sacrifice day. MEAN and SD (Standard Deviation).

Groups		Weight (g)						Biochemical Exams				
	Body		Kidney		Testis		Suprarenal		creatine	proteinuria	testoterone corticosterone	
	Initial	Sacrifice	Right	Left	Right	Left	Right	Left	mg/dl	mg/24h	ηg/dl	µg/dl
L 7Mean	289.88	280.00*	1.158	1.324	1.375	1.487	0.030	0.0340	500*	11.828*	87.125*	7.549*
SD	24.175	23.568	0.153	0.479	0.282	0.232	0.004	0.006	0.053	1.994	33.989	3.253
C 7Mean	276.88	273.75	1.071	1.070	1.500	1.449	0.027	0.030	0.375	9.086	142.375	3.328
SD	19.628	21.218	0.101	0.099	0.074	0.094	0.007	0.008	0.046	1.540	45.074	2.246
L 15Mean	290.00	294.50 *	1.234 *	1.455 *	1.413	1.399	0.028	0.028	0.488	12.103 *	126.375	8.231
SD	25.355	26.533	0.146	0.357	0.344	0.358	0.005	0.006	0.035	3.203	50.622	5.257
C 15Mean	281.63	292.25	1.083	1.064	1.534	1.550	0.025	0.025	0.413	8.313	108.625	5.904
SD	28.948	29.688	0.150	0.149	0.122	0.126	0.005	0.006	0.064	1.8812	2.206	2.123
L 30Mean	288.00	300.75	1.103	1.021	1.418	1.436	0.030*	0.031*	0.438	14.328*	115.000	10.129
SD	20.227	19.241	0.116	0.214	0.226	0.188	0.006	0.008	0.052	4.0123	33.785	4.583
C 30Mean	317.00	326.50	1.096	1.122	1.523	1.556	0.025	0.024	0.400	8.840	129.375	8.280
SD	11.225	12.306	0.083	0.108	0.093	0.077	0.003	0.004	0.093	1.5841	10.225	4.615
L 60Mean	315.50	331.88*	1.441*	0.576*	1.459	1.243*	0.026	0.027	0.363*	14.283*	117.000	7.650
SD	34.422	44.315	0.216	0.296	0.374	0.514	0.004	0.002	0.052	3.7024	46.522	1.834
C 60Mean SD	309.75 33.247	338.75 37.583	1.124 0.152	1.109 0.112	1.638 0.131	1.678 0.154	0.024 0.006	0.023 0.004	0.288 0.099	10.725 3.5445	144.750 50.821	7.676
* p < 0,05				100		1.1		1.11	10. 10.			

observed on the 30th day and to the left on the 60th day, in relation to the control group, and were more severe to the left than to the right . p < 0.05 (Table 3, Fig. 3)

Suprarenal Glands

In the ligature groups, we found severe lesions due to ischemia, classified as cortical atrophy, medullar and cortical necrosis of the suprarenal glands of the rats sacrificed on the 7th, 15th, 30th and 60th days after the initial operation, but without statistical differences in relation to the control group. (Table 3) p > 0.05.

Figure 2 - Left kidney of rat # 55 of the ligature group, showing alterations of the ischemic type, difuse, with retracted, enlarged mesangial matrix and tubuli with atrophy signs, surrounded by interstitium with fibrosis and rare lymphocyte infiltrates. (HE - 126x)

Figure 1 - Ligature of the left renal vein, seven days after the initial operation. it is shown on the left side the dilatation of following veins: renal, suprarenal, testicular, of the pampiniform plexus, of the ureber and increase of the kidney.

on the 7th, 15th, 30th and 60th days after the initial operation. They were more severe to the left than to the right. Statistical differences were only observed on the left side, in the ligation groups, compared with the control groups in the 7th, 15th, 30th and 60th day. p < 0.05 (Table 3, Fig. 2)

Testes

In the ligature groups, we found severe lesions due to ischemia, classified as atrophy, necrosis, diffuse fibrosis with calcification of the testes of the rats sacrificed on the 7th, 15th, 30th and 60th days after the initial operation. Significant statistical bilateral differences were only

Figure 3 - Left testis of rat # 38 of the ligature group, showing diffuse coagulation necrosis. Interstitial inflammatory exudate is also present. (HE - 79x)

	Table 3
Results of	the histopathology of the kidneys, testes
and supra	arenal glands. GROUPS: L = Ligature, C =
Control; a	nd 7, 15, 30 e 60 refer to the sacrifice day.
	(* p < 0.05 by Fisher exact test)

		Kidneys		Testes		Suprarenal Glands	
Groups	Histopathology	Right	Left	Right	Left	Right	Left
L7	Normal	6	3	6	8	6	7
	Pathologic	2	5*	2	0	2	1
C 7	Normal	8	8	8	8	8	8
	Pathologic	0	0	0	0	0	0
L 15	Normal	7	0	5	5	7	5
	Pathologic	1	8*	3	3	1	3
C 15	Normal	8	8	8	8	8	8
	Pathologic	0	0	0	0	0	0
L 30	Normal	7	2	3	2	6	6
	Pathologic	1	6 *	5*	6*	2	2
C 30	Normal	8	8	8	8	8	8
	Pathologic	0	0	0	0	0	0
L 60	Normal	8	0	6	4	8	6
	Pathologic	0	8 *	2	4 *	0	2
C 60	Normal	8	8	8	8	8	8
	Pathologic	0	0	0	0	0	0

DISCUSSION

In this study we found biochemical, functional and histological alterations as a result of the ligation of the left renal vein. Confirming previous studies on the subject, dilation of the left renal vein and its tributaries was found only in the ligation groups, in all periods.^{61,75,86,106,115,122,123}

In the LLRV animals, we found a significant variation of body weight (less weight increase compared to the control group) on the 7th, 15th and 60th day after the initial operation. However, this variation was not present when only a stenosis of the LRV was performed.⁸⁶

At the end of the experiment hypertrophy was found in the right kidney, and atrophy in the left. These alterations showed that the right kidney increased in size because of overload, and the left kidney lost weight due to severe histological injuries caused by ischemia due to an extendend venous stasis. These results are the same reported by other authors.^{2,61,75,124-127} In dogs submitted to ligation of the left renal vein there was a decrease of blood flow on the left as a consequence of venous stasis⁷⁵ and in man the variation of the pressure in the hilar renal venous stump was dependent on the flow through the tributaries of the LRV with the pressure above 60 cm of water in the hilar renal venous stump possibly leading to a decrease of the glomerular filtration due to the decrease of the renal arterial flow.17.54 We found an increase in creatinine serum and proteinuria in the ligature groups, although these values were practically normal. Light proteinuria was observed in rats submitted to LLRV. Massive proteinuria, such as that observed in nephrotic syndrome, was only possible in severe renal injury.¹²⁴ It is difficult to obtain massive proteinuria in an experimental study.¹²⁸ Failure to produce massive proteinuria from an affected kidney or nephrotic syndrome may be partially due to the insufficient increase of the renal venous pressure. Significant proteinuria occurred only in a dog with high renal venous pressure (30 cm of saline).¹²⁶In acute experiments Wegria et al ¹²⁹ found that protein was not present in the urine when the pressure in the left renal vein of the dog was of less than 24,5 cm of water. A pressure between 24,5 and 42 cm of water in the left kidney excreted protein in 17 of the 27 animals under study. In pressures above 42 cm of water, proteinuria was practically always present.129 In dogs the pressure of the left renal vein after ligature varied between 14 and 30 cm of water, and was not associated with significant proteinuria from either the affected or the control kidney.¹²⁶ In the histological analysis we observed that the kidneys had a severe lesion due to diffuse ischemia, atrophy of the parenchyma, necrosis of papilla, infarction and fibrosis in all groups of ligation especially in the left kidney, with the biochemical alterations (serum creatinine and proteinuria) remaining near the limits of normality for rats. Histological alterations were related to an increase in protein droplets in the tubular cells, leukocyte margination in the glomerular capillaries, and thickening of the glomerular membrane.126 This showed that in the case of LLRV biochemical analysis alone is not sufficient to uncover a renal lesion as already reported in medical literature.^{61,75,114,124,125,127,130} Our results showed that renal lesions were predominantly on the left side in all periods. Nevertheless, lesions on the right side were present only in the ligature groups suggesting that there are other factors contributing to a lesion in the right kidney. This could possibly be due to an immunocomplex reaction as a result of an injury to the left kidney, similar to that described by other investigators.75.110

In the testes, atrophy was found on the left on the 60th day, a finding already described in experimental stenosis of LRV.⁸⁶ There was practically no variation of the serum testosterone level throughout the periods. Similar alteration of the serum testosterone level was reported by other authors in relation to patients with varicocele and also in animals

with stenosis of LRV. These authors have also found an increase of luteinizing hormones, follicle-stimulating, prolactin, oligospermia and zoospermia.^{104,107,108,117,131} The histological analysis of our study showed a severe bilateral testicular lesion in three of the four groups of ligation, more pronounced to the left on the 30th and 60th day. Other researchers found bilateral testicular lesions and they considered that these could be induced by immunocomplex reaction.^{86,132,137} Other studies must be conducted to further investigate testicular injuries caused by varicocele,¹³⁸ but it has been suggested that a defect in the testicular energetic metabolism caused by varicocele may be associated to the worsening of spermatogenesis in rats.¹³⁹

In the suprarenal glands we found bilateral histological lesions in most periods, but with no statistical

difference, although we could find nothing in medical literature concerning suprarenal gland lesion provoked by varicocele or by LLRV. Other authors reported suprarenal gland lesions such as hemorrhage and necrosis, caused by stress, operation or post thrombosis of the inferior vena cava or of LRV in the newborn. ^{64,77,78.84}

We can report that the ligation of the left renal vein close to the inferior vena cava in male adult EPM1-WISTAR rats leads to a severe bilateral histological lesion in the kidneys, testes especially on the left side. The results of the biochemical analysis were not sufficient to demonstrate functional alterations. Histopathological analysis was considered the best test for assessment of lesions caused by LLRV.

RESUMO

Objetivo: A ligadura da veia renal esquerda é conduta discutida na literatura pelos riscos de lesão do perênquima renal. Com o objetivo de estudar morfológica e funcionalmente essas lesões, realizamos trabalho experimental em ratos. **Material e Método:** foram utilizados 64 ratos machos adultos da linhagem EPM1-WISTAR, divididos em oito grupos. Em quatro grupos efetuou-se a ligadura da veia renal esquerda enquanto os outros quatro serviram de "grupo controle". Cada grupo com veia ligada e respectivo "grupo controle" foram sacrificados sucessivamente no sétimo, 15º, 30º, e 60º dia após a operação inicial. **Resultados:** encontramos alterações morfo-funcionais apenas nos ratos submetidos a ligadura e em todos períodos de sacrifício. Os resultados de proteinúria e as dosagens plasmáticas de creatina, testoterona e corticosterona pouco se alteraram em relação aos valores normais. Lesões histológicas graves e estatisticamente significante apareceram nos rins e testículo nos grupos submetidos à "ligadura da veia renal esquerda", embora fossem observados também nas glândulas supra-renais, porém sem significado estatístico. **Conclusão:** com base nestes resultados, concluímos que a ligadura da veia renal esquerda nestes animais é de alto risco.

REFERENCES

- Baptista-Silva JCC. Ligadura da veia renal esquerda em ratos EPM1-WISTAR: complicações renais, testiculares e das glândulas supra-renais. (PhD Thesis). São Paulo (SP), Escola Paulista de Medicina / UNIVERSIDADE FEDERAL DE SÃO PAULO, 1994.
- Aburahma A F, Robinson PA, Boland JP, Lucente FC. The risk of ligation on the left renal vein in resection of the abdominal aortic aneurysm. Surg Gynecol Obstet 1991;173:33-6.
- Adar R, Rabbi I, Bass A. Left renal vein division in abdominal aortic aneurysm operations. Arch Surg 1985;120:1033-6.
- Anderson C, Sjoli SU, Holstein P. Ligation of the renal vein during resection of abdominal aortic aneurysm. J Cardiovasc Surg 1986;27:454-6.
- Anson BJ, Cauldwell EW, Pick JW, Beaton LE. The anatomy of the pararenal system of veins, with comments on the renal arteries. J Urol 1948;60:714-37.

- Anson BJ, Cauldwell EW, Pick JW, Beaton LE. The blood supply of the kidney, suprarenal gland, and associated structures. Surg Gynecol Obstet 1947;84:313-20.
- Ariyoshi A, Nagase K. Renal hematuria caused by nutcracker phenomenon: a more logical surgical management. Urology 1990;35(2):168-70.
- Barnes RW, Fleisher HL, Redman JF, et al. The nutcracker syndrome (mesoaortic compression on the left renal vein): Repair by a new stenting procedure. J Vasc Surg 1988;8:415-21.
- Carroll PR, Mcaninch JR, Klosterman P, Greenblatt M. Renovascular trauma: risk assessment, surgical management, and outcome. J Trauma 1990;30(5):547-54.
- Clark CD, Leeds MB. Survival after excision of a kidney, segmental resection of the vena cava, and division of the opposite renal vein. Lancet 1961;2:1015-6.
- Dearing PD, James EC, Swenson WM, Slotnick H B, Schmidt, MJ. Further experience with division of the left renal vein. Surgery 1990;107(1):105-9.
- Erlik D, Barzilai A, Shramek A. Renal function after left renal vein ligation. J Urol 1965;93:540-4.

- Gardner E. Vasos sangüíneos do abdome. In: Gardner E, Gray DJ, O'Rahilly R, eds. Anatomia. 2.ed. Rio de Janeiro:Guanabara Koogan, 1967:476-84.
- Johnston KW, Scobie TK. Multicenter prospective study of nonruptered abdominal aortic aneurysms. I. Population and operative management. J Vasc Surg 1988;7:69-81.
- Johnston KW. Basis for technically difficult decisions in abdominal aortic aneurysm repair. In: Veith FJ, ed. Current critical problems in vascular surgery. Saint Louis: Quality, 1989:281-3.
- 16. Lasher EP. Porto-renal shunt. Am Surg 1965;31:433-6.
- Mccombs PR, Delaurentis DA. Division of the left renal vein. Guidelines and consequences. Am J Surg 1979;138:257-63.
- Nahas WC, Arap S. Urgências urológicas traumáticas. In: Birolini D, Utiyama E, Steinman E, eds. Cirurgia de emergência. São Paulo:Atheneu, 1993:208-15.
- Pick JW, Anson BJ. The renal vascular pedicle. J Urol 1940;44:411-34.
- Rosaenz JF, Esteban FA, Sevillano CG, et al. Diagnóstico de la trombosis de vena renal y cava inferior: A propósito de un nuevo caso. Arch Esp Urol 1993;46(3):237-40.
- Royster TS, Lacey L, Marks RA. Abdominal aortic surgery and the left renal vein. Am J Surg 1974;127:55-4.
- Rutherford RB. Infrarenal aortic aneurysms. In: Rutherford RB, ed. Vascular surgery. Philadelphia:Saunders, 1977:639-54.
- Sampaio FJ, Aragão AH. Anatomical relationship between the renal venous arrangement and the kidney collecting system. J Urol 1990;144(5):1093-93.
- Simeone FA, Hopkins RW. Portarenal shunt for hepatic cirrhosis and portal hypertension. Surgery 1967;61:153-68.
- Simon JS, Brown AA, Ross HB. Ligation of the left renal vein in splenorenal anastomosis without impairment of renal function. Br J Surg 1972;59:170-3.
- Warren WD, Salam AA, Faraldo A, Hutson D, Smith, RB. End renal vein-to-splenic vein shunts for total or selective portal decompression. Surgery 1972;72(6):995-1006.
- Zarins CK, Gewertz BL. Aortic aneurysm. In: Zarins CK, Gewertz BL, eds. Atlas of vascular surgery. New York:Churchill Livingstone, 1989:42-53.
- Baptista-Silva JCC, Figueiredo LFP, Cal RGR, Castro MJ, Verissimo MJ, Câmara AL. Importância da angiografia na seleção do doador-vivo renal. J Bras Urol 1995;21(4):244.
- Baptista-Silva JCC, Figueiredo LFP, Cal RGR, Castro MJ, Verissimo MJ, Câmara AL. Nefrectomia em doador-vivo por anterior extraperitoneal. J Bras Urol 1995;21(4):245.
- Baptista-Silva JCC, Medina JOP, Burihan, E. Anatomical study of the renal veins and its variations observed during living donor nephrectomy. Phlebology 1995;2(suppl 1):1085-7.
- Dube VE, Carlquist JH. Surgical treatment of leiomyosarcoma of the inferior vena cava. Am Surg 1971;37:87-90.
- Kretz JG, Matysiak M, Matter D. Sarcome léiomyoblastique de la veine cave inférieure. Ann Chir 1984;38:309-11.

- Burihan E, Ikeda S, Baptista-Silva JCC, Francisco Jr J, Feitas V. Pelvic varices: evaluation by duplex ultrasonography pelvic phlebography and surgery: case report. Phlebology 1995;2(suppl 1):1033-5.
- Crawford ES, Debakey ME. Wide excision including involved aorta and vena cava and replacement with aortic homograft for retroperitoneal malignant tumors. Cancer 1956;9:1085-91.
- 35. Delaurentis DA, Savarese RP, Ritchie WGM, Kaplan SM. Venous anomalies encountered in aortic surgery: their preoperative detection by CAT scan and intraoperative management. In: Veith FJ, ed. Current critical problems in vascular surgery. Saint Louis:Quality, 1989:284-90.
- Edwards RD, Robertson IR, Maclean AB, Hemingway AP. Case report: pelvic pain syndrome - successful treatment of a case by ovarian vein embolization. Clin Radiol 1993;47:429-31.
- Gardner E. Rins, ureteres, glândulas supra-renais. In: Gardner E, Gray DJ, O'Rahilly R, eds. Anatomia. 2.ed. Rio de Janeiro:Guanabara Koogan, 1967:466-75.
- Giordano JM, Trout III HH. Anomalies of the inferior vena cava. J Vas Surg 1986;3:924-8.
- Hallett JW. Minimizing the use of homologous blood products during repair of abdominal aortic aneurysms. Surg Clin North Am 1989;69(4):817-27.
- Hayashi M, Kume T, Nihita H. Abnormalities of renal venous system and unexplained renal haematuria. J Urol 1980;124:12-5.
- Hoeltl W, Hruby W, Aharinejad S. Renal vein anatomy and its implications for retroperitoneal surgery. J Urol 1990;143:1108-14.
- Latorre J. Anatomía y fisiología. In: Villallonga JT, ed. Sector iliocava. Barcelona:Uriach, 1993:37-66.
- Latorre J. Embriología. In: Villallonga JT, ed. Sector iliocava. Barcelona: Uriach, 1993:17-23.
- 44. Linsell JC, Rowe PH, Owen WJ. Rupture of an aortic aneurysm into the renal vein presenting as a left-sided varicocele. Acta Chir Scand 1987;153:477-8.
- Martinez-Almagro A, Garcia VA, Sanjuan VM, Tejada THG, Montalvo PL. Retroaortic left renal vein: a report of six cases. Surg Radiol Anat 1992;14:361-6.
- Positano N, Nadalino VF, Bruttini GP. Haematuria due to circumaortic left renal vein. Urology 1980;16:73-6.
- 47. Sporer A, Pollock R. Renal varix. Am J Roentgenol 1982;138:149-50.
- Taylor WN, Schillinger JF, Gaum L. Renal vein compression. J Urol 1977;118:1061-6.
- Testut L, Jacob O. Organos retroperitoneales. In: Testut L, Jacob O, eds. Tratado de anatomia topográfica. 8th ed. Barcelona:Salvat, 1977:280-328.
- Thompson PN, DarlingIII RC, Chang BB, Shah DM, Leather RP. A case of nutcracker syndrome: treatment by mesoaortic transposition. J Vasc Surg 1992;16(4):663-5.
- Veith FJ, Gupta SK, Daly V. Technique for occluding the supraceliac aorta through the abdomen. Surg Gynecol Obstet 1980;151:427-8.

- Yang SC, Suh DH, Kim YS, Park K. Anatomical study of the left renal vein and its draining veins, as encountered during living donor nephrectomy. Transp Proc 1992;24(4):1333-4.
- Budden J, Hollier LH. Management of aneurysms that involve the juxtarenal or suprarenal aorta. Surg Clin North Am 1989;69(4):837-45.
- Calligaro KD, Saverese RP, Mccombs PR, Delaurentis DA. Division of the left renal vein during aortic surgery. Am J Surg 1990;160:192-6.
- Chait A, Matasar RW, Fabian CE, Mellins HZ. Vascular impressions on the ureters. Am J Roetgenol Radium Ther 1971;111:729-49.
- Cooley DA, Debakey ME. Resection of the thoracic aorta with replacement by homograph for aneurysms and constrictive lesions. J Thorac Surg 1955;19:66-104.
- Delaurentis DA, Iyengar SRK. Renal function and a technique for venography after left renal vein ligation. Am J Surg 1970;120:41-5.
- Devine TJ, Scott DF, Myers KA, King RB. Massive haemorrhage caused by left renal vein ligation. Br J Surg 1980;67:594-5.
- Erlik D, Barzilai A, Shramek A. Porto-renal shunt: a new technique for portosystemic anastomosis in portal hypertension. Ann Surg 1964;159:72-8.
- Fujita K, Munakata A. Left renal haematuria by compression of an unusual vein. Internat Urol Nephrol 1991;23(4):303-6.
- González-Avila G, Vadillo-Ortega F, Perez-Tamayo R. Experimental diffuse interstitial renal fibrosis. A biochemical approach. Lab Invest 1988;59(2):245-52.
- Lord RSA. Trial clamping before division of the left renal vein. Surgery 1982;91:409-12.
- Neal HS, Shearburn EW. Division of the left renal vein as an adjunct to resection of abdominal aortic aneurysms. Am J Surg 1967;113:763-5.
- Orazi C, Farielo G, Malena S, Schingo P, Ferro F, Bagolan P. Renal vein thrombosis and adrenal hemorrhage in the newborn: ultrasound evaluation of 4 cases. J Clin Ultrasound 1993;21(3);163-9.
- Pastershank SP. Left renal vein obstruction by a superior mesenteric artery. J Can Assoc Radiol 1974;25:52-4.
- Rastad J, Almgren B, Bowald S, Eriksson I, Lundquist B. Renal complications to left renal vein ligation in abdominal aortic surgery. J Cardiovasc Surg 1984;25:432-6.
- Shintaku N, Takahashi Y, Akaishi K, Sano A, Kuroda Y. Entrapment of left renal vein in children with orthostatic proteinuria. Pediatr Nephrol (Germany) 1991;4(4):324-7.
- Stenstrom JD, Ford HS, Mackay MI, Hosie RT, Donald JC. Ruptured abdominal aortic aneurysms. Am Surg 1976;42:538-40.
- Stoney RJ, Matsumoto K. Transabdominal exposures of the upper abdominal aorta: techniques and strategies. In: Veith FJ, ed. Current critical problems in vascular surgery. Saint Louis:Quality Medical Publishing, 1989:275-80.
- Swanson RJ, Carlson RE, Olcott C, Stoney RJ. Rupture of the kidney following a renosplenic shunt. Surgery 1976;79(6):710-12.

- Cooley DA, Wukasch DC. Aneurysms of the abdominal aorta. In: Cooley DA, Wukasch DC, eds. Techniques in vascular surgery. Philadelphia: Saunders, 1979:54-69.
- Cooley DA. Thoracoabdominal aortic aneurysms. Cardiac Surg 1987;1(3):393-402.
- 73. Ristow Av, Abreu RC, Bonamigo TP, Burihan E, Cinelli Jr M. Complicações precoces e tardias das restaurações arteriais aorto-ilíacas. In: Bonamigo TP, Burihan E, Cinelli Jr M, Von Ristow A. Doenças da aorta e seus ramos. São Paulo:Fundo Editorial Byk, 1993;362-82.
- Szilagyi DE, Smith RF, Elliot JP. Temporary transection of the left renal vein: A technical aid in aortic surgery. Surgery 1969;65(1):32-40.
- Harris JD, Ehrenfeld WK, Lee JC, Wylie EJ. Experimental renal vein occlusion. Surg Gynecol Obstet 1968;126:555-62.
- 76. Hobson RW, Howard EW, Wright CB. Hemodynamics of femoral vein ligation in canine hind limb. In: Swang KG, ed. Venous surgery in the lower extremity. Saint Louis:Warren H. Green, 1975:215-21.
- Bennett WG, Wood BP. Radiological case of the month (left renal vein thrombosis and left adrenal hemorrhage). Am J Disease Children 1991; 145:1299-1300.
- Brill PW, Jagannath A, Winchester P, Markisz JA, Zirinsky K. Adrenal hemorrhage and renal vein thrombosis in the newborn: MR image. Radiology 1989;170:95-8.
- 79. Comhaire F, Monteyene R, Kunnen M. The value of scrotal thermography as compared with selective retrograde venography of the internal spermatic vein for the diagnosis of "subclinical" varicocele. Fertil Steril 1976;27:694-8.
- Irace L, Gossetti B, Benedetti-Valentini F. Aneurysm of the left vein: a case report. J Vasc Surg 1994;19(5):943-4.
- James EC, Fedde CW, Khuri NT, Gillespie JT. Division of the left renal vein: A safe surgical adjunct. Surgery 1978;83:151-4.
- Javert CT, Clark RL. Combined operation for varicocele and inguinal hernia; preliminary report. Surg Gynecol Obstet 1944;79:644-6.
- Macleod J. Seminal cytology in the presence of varicocele. Fertil Steril 1985,16:735-8.
- Orth DN, KOVACS WJ, Debold CR. The Adrenal. In: Wilson JD, Foster, DW, eds. Textbook of endocrinology. 8 ed. Philadelphia:Saunders 1992: 489-619.
- Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L. Intravascular stents to prevent occlusion and restenosis after transluminar angioplasty. N Engl J Med 1987;316:701-6.
- Sofikitis N, Miyagawa I. Left adrenalectomy in varicocelized rats does not inhibit the development of varicocele-related physiologic alterations. Int J Fertil 1993;38(4):250-5/
- Spira R, Kwan E, Gerzof SG, Widrich WC. Left renal vein varix simulating a pancreatic pseudocyst by sonography. J Urol 1947;48:424-7.
- Wylie EJ. Discussion. In: Najarian JS, Delaney JP, eds. Vascular surgery. Chicago: Year Book, 1978:405-14.
- Wylie EJ. Renal artery revascularization for renovascularization: indications and techniques. In: Najarian JS, Delaney JP, eds. Vascular surgery. Chicago: Year Book, 1978:385-93.

São Paulo Medical Journal/RPM 115(4): 1475-1484, 1997

- Crawford ES, Crawford JL. Aneurysms of Degenerative Origin. In: Crawford ES, Crawford JL,eds. Diseases of the aorta. Baltimore:Williams & Wilkins, 1984;1-166.
- Dean RH, Hansen K.J. Renal revascularization: how to make a difficult operation easier. In: Veith FJ, ed. Current critical problems in vascular surgery. Saint Louis: Quality, 1989:306-8.
- Debakey ME, Cooley DA, Creech OJ. Surgical treatment of aneurysms and occlusive disease of the aorta. Postgrad Med 1954;15:120-7.
- Debakey ME, Crawford ES, Garret HE, Beal A, Howell JL. Surgical considerations in the treatment of aneurysms of the thoraco-abdominal aorta. Ann Surg 1965;162:650-62.
- 94. Dubost C, Allary M, Oeconomos N. Resection of an aneurysm of the abdominal aorta: re-establishment of the continuity by a preserved human arterial graft, with results after five months. Arch Surg 1952;64:405-8.
- Haimovici H. Abdominal aortic aneurysm. In: Haimovici H, ed. Vascular surgery. 2 ed. East Norwalk: Appleton-Century-Crofts, 1984:685-738.
- Hermreck AS. Prevention and management of surgical complications during repair of abdominal aortic aneurysms. Surg Clin North Am 1989;69(4):869-94.
- Hewitt RL. Vascular injuries. In: Haimovici H, ed. Vascular surgery. 2 ed. East Norwalk: Appleton-Century-Crofts, 1984:389-412.
- Mattox KL. Trauma to the aorta. Cardiac Surg 1987;1(3):403-17.
- Najarian JS. Discussion. In: Najarian JS, Delaney JP. Vascular surgery. Chicago: Year Book, 1978:405-14.
- 100.Nypaver TJ, Sherpard AD, Reddy DJ, Elliott JP, Ernst CB. Supraceliac aortic cross-clamping: determinants of outcome in elective abdominal aortic reconstruction. J Vasc Surg 1993;17(5):868-76.
- 101.O'Hara PJ, Hakaim AG, Hertzer NR, Krajewski LP, Cox GS, Beven E. Surgical management of aortic aneurysm and coexistent horseshoe kidney: review of a 31-year experience. J Vasc Surg 1993;17(5):940-7.
- 102.Reilly LM, Ramos TK, Murray SP, Cheng SWK, Stoney RJ. Optimal exposure of the proximal abdominal aorta: a critical appraisal of transabdominal medial visceral rotation. J Vasc Surg 1994;19(3):375-90.
- 103.Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ. Thoracoabdominal aortic aneurysms associated with celiac, superior mesenteric, and renal occlusive disease: methods and analysis of results in 271 patients. J Vasc Surg 1992;16(3):378-90.
- 104. Ashkenazi J, Dicker D, Feldberg D, Shelef M, Goldman G A, Goldman J. The impact of spermatic vein ligation on the male factor in vitro fertilization-embryo transfer and its relation to testosterone levels before and after operation. Fertil Steril 1989;51(4):471-4.
- 105.Greene EC. Circulatory system. In: Greene EC, ed. Anatomy of the rat. New York:Hafner, 1963:177-336.
- 106.Green KF, Turner TT, Howards SS. Varicocele: reversal of the testicular blood flow and temperature effects by varicocele repair. J Urol 1984;131:1208-12.

- 107. Hirokawa M, Iwamoto T, Iwasaki A, et al. Clinical observations on fertile males with varicocele. Eur Urol 1989;16(1):23-7.
- 108. Kass EJ, Freitas JE, Bour JB. Adolescent varicocele: objective indications for treatment. J Urol 1989;142(2 Pt 2):579-82.
- 109. Kihlstrum JM, Clements GR. Spontaneous pathologic findings in Long-Evans rats. Lab Anim Care 1969;19(5):710-5.
- 110. Krakower CA, Greenspon SA. Localization of nephrotoxic antigen within isolated renal glomerulus. A M A Arch Pathol 1951;51:629-39.
- 111. Mali WPTM, Oei HY, Arndt JW. Hemodynamics of the varicocele. Part I. Correlation among the clinical, phebographic and scintigraphic findings. J Urol 1988;135:483-8.
- 112. Mali WPTM, Oei HY, Arndt JW. Hemodynamics of the varicocele. Part II. Correlation among the results of renocaval pressure measurements, varicocele scintigraphy and phebography. J Urol 1986;135:489-93.
- 113. Mazo EB, Koryakin MV, Kudryavtsev JUV, Evseev LP, Akopyan AS. The role of impairment of adrenal mineraloglucocorticoid function in development on infertility in varicocele patients. Int Urol Nephrol 1989;21(4):403-16.
- 114. Perassi R, Martin A. Urinary proteins of the normal rat. Int J Peptide Protein Res 1973;5:1-6.
- 115. Saypol DC, Howards SS, Turner TT. Influence of surgical induced varicocele on testicular blood flow, temperature, and histology adult rats and dogs. J Clin Invest 1981;68:39-45.
- 116. Shafik A, Moftah A, Olfat S, Mohi-El-Din M, El-Sayed A. Testicular veins: anatomy and role in varicocelogenesis and other pathologic conditions. Urology 1990;35(2):175-84.
- 117. Shafik A, Wali MA, Abdel AYE, et al. Experimental model of varicocele. Eur Urol 1989;16(4):298-303.
- 118.Ferting MFW. International index of laboratory animals. 2nd.ed. Carshalton: Lion Litho Ltd, 1993:238p.
- 119.Peres CA, Saldiva CD. Planejamento de experimentos. In: Simpósio Nacional de Probabilidade e Estatística. São Paulo. Anais. São Paulo, 1982, p.54.
- 120.Sokal RR, Rohlf FJ. BIOMETRY. San Francisco:W.H. Freeman, 1969:776p.
- 121.Colton T. Inference on proportions. In: Colton T, ed. Statistics in medicine. Boston: Little & Brown, 1974:164p.
- 122.Carl P, Stark L, Ouzoun N, Reindl P. Venous pressure in idiopathic varicocele. Eur Urol 1993;24(2):214-20.
- 123. Gonzalez E, Leiter E, Jemerin EE, Brendler H. Renal survival after renal vein ligation. JAMA 1967;200:259-61.
- 124.Fisher ER, Sharkey D, Pardo V, Vuzevski V. Experimental renal vein constriction. Lab Invest 1968;18(6):689-99.
- 125. Omae T, Masson MC, Corcoran AC. Experimental production of nephrotic syndrome following renal vein constriction in rats. Proc Soc Exper Biol Med 1958;97:821-5.
- 126. Sandrolini JA, Torres C, Pollak VE. Histologic and functional changes following partial occlusion of the renal vein in the dog: A preliminary study. Invest Urol 1965;3:83-91.
- 127.Siderys H, Kilman JW. The effects of acute occlusion of the renal vein in dogs. Surgery 1966;59:282-5.
- 128. Verstraete M, Vermylen J. Trombose venosa em órgãos particulares. In: Verstraete M, Vermylen J, eds. Trombose. São Paulo:Savier, 1989:292-303.

BAPTISTA-SILVA,J.C.C.; DOLNIKOFF,M.S.; MOURA, L.A.R. et al. - Ligation of the left renal vein in epm1-wistar rats: functional and morphologic alterations in the kidneys, testes and suprarenal glands

- 129.Wegria R, Capeci NE, Blumenthal MR, et al. Pathogenesis of proteinuria in the acutely congested kidney: J Clin Invest 1955;34:737-45.
- 130.Stanley JC. Renal revascularization: Errors in patient selection and complications of operation. In: Bernhard VM, Towne JB, eds. Complications in vascular surgery. Saint Louis:Quality Medical Publishing, 1991:180-203.
- 131. Talati JJ, Islahuddin M. The clinical varicocele in infertility. Br J Urol 1988;61(4):354-8.
- 132.Hurt GS, Howards SS, Turner TT. Repair of experimental varicoceles in the rat: long-term effects on testicular blood flow and temperature and caudal epididymal sperm concentration on motility. J Androl 1986;7:271-6.
- 133.Laven JSE, Wensing CJG. Induction of varicocele in the dog: I. partial ligation of the left renal vein does not induce a varicocele in the dog. J Androl 1989;10:9-16.

- 134. Laven JSE, Wensing CJG, Meijer JC, Wolvekamp WTC, Teerds KJ. Total ligation of the left renal vein in dog: an inappropriate model for varicocele. Int J Androl 1991;14:348-58.
- 135. Shook TE, Nyberg LM, Collins BS, Mathur S. Pathological and immunological effects of surgically induced varicocele in juvenile and adult rats. Am J Reprod Immunol Microbiol 1988;17(4):141-4.
- 136. Wang R, Chang JS, Zhou X.M, Chen DY. Varicocele in the rat: a new experimental model. Urol Res 1991;19:319-22.
- 137.Witt MA, Lipshultz LI. Varicocele: a prospective or static lesion? Urology, 1993;42(5):541-3.
- 138.Hudson RW. The endocrinology of varicocele. Fertil Steril 1988;49(2):199-208.
- 139.Hsu HS, Chang LS, Chen MT, Wei YH. Decreased blood flow and defective energy metabolism in the varicocelebearing testicles of rats. Eur Urol 1994;25(1):71-5.