Complex karyotype including ring chromosome 11 in a patient with acute myeloid leukemia
case report
Keywords:
Leukemia, myeloid, acute, Leukemia, Obesity, Chromosome aberrations, Cytogenetic analysisAbstract
CONTEXT: Complex karyotypes in acute myeloid leukemia (AML) are characterized by an overall low response rate with frequent relapses after clinical treatment. CASE REPORT: Here, we describe the case of a 61-year-old obese female with clinically diagnosed AML who presented a complex karyotype involving an uncommon abnormality: ring chromosome 11. Immunophenotypic analysis confirmed the diagnosis. Classical and molecular cytogenetic analyses, using GTG banding and FISH (fluorescence in situ hybridization), revealed the presence of complex structural rearrangement involving r(11), add(12)(p13), der(5) and der(13). CONCLUSION: Molecular cytogenetic analysis is suitable for better identification and characterization of chromosomal rearrangements in AML. Case reports like this, as well as population-based studies, are necessary for understanding the karyotypic changes that occur in humans.
Downloads
References
Bray WM, Bivona C, Rockey M, et al. Outcomes for newly diagnosed patients with acute myeloid leukemia dosed on actual or adjusted body weight. Cancer Chemother Pharmacol. 2015;76(4):691-7.
Castillo JJ, Mulkey F, Geyer S, et al. Relationship between obesity and clinical outcome in adults with acute myeloid leukemia: A pooled analysis from four CALGB (alliance) clinical trials. Am J Hematol. 2016;91(2):199-204.
Poynter JN, Richardson M, Blair CK, et al. Obesity over the life course and risk of acute myeloid leukemia and myelodysplastic syndromes. Cancer Epidemiol. 2016;40:134-40.
Yang XF, Sun AN, Yin J, et al. Monosomal karyotypes among 1147 Chinese patients with acute myeloid leukemia: prevalence, features and prognostic impact. Asian Pac J Cancer Prev. 2012;13(11):5421-6.
Wawrzyniak E, Wierzbowska A, Kotkowska A, et al. Different prognosis of acute myeloid leukemia harboring monosomal karyotype with total or partial monosomies determined by FISH: retrospective PALG study. Leuk Res. 2013;37(3):293-9.
Gebhart E. Ring chromosomes in human neoplasias. Cytogenet Genome Res. 2008;121(3-4):149-73.
Andreasson P, Johansson B, Billström R, et al. Fluorescence in situ hybridization analyses of hematologic malignancies reveal frequent cytogenetically unrecognized 12p rearrangements. Leukemia. 1998;12(3):390-400.
Avet-Loiseau H, Godon C, Li JY, et al. Amplification of the 11q23 region in acute myeloid leukemia. Genes Chromosomes Cancer. 1999;26(2):166-70.
Cigudosa JC, Odero MD, Calasanz MJ, et al. De novo erythroleukemia chromosome features include multiple rearrangements, with special involvement of chromosomes 11 and 19. Genes Chromosomes Cancer. 2003;36(4):406-12.
Dastugue N, Lafage-Pochitaloff M, Pagès M P, et al. Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study of the Groupe Français de Cytogénétique Hématologique (GFCH). Blood. 2002;100(2):618-26.
El-Rifai W, Elonen E, Larramendy M, Ruutu T, Knuutila S. Chromosomal breakpoints and changes in DNA copy number in refractory acute myeloid leukemia. Leukemia. 1997;11(7):958-63.
Fischer K, Fröhling S, Scherer SW, et al. Molecular cytogenetic delineation of deletions and translocations involving chromosome band 7q22 in myeloid leukemias. Blood. 1997;89(6):2036-41.
Chromosome analysis of 63 cases of secondary nonlymphoid blood disorders: a cooperative study. Groupe Français de Cytogénétique Hématologique. Cancer Genet Cytogenet. 1984;12(2):95-104.
Gisselsson D, Höglund M, Mertens F, et al. The structure and dynamics of ring chromosomes in human neoplastic and non-neoplastic cells. Hum Genet. 1999;104(4):315-25.
Johansson B, Billström R, Kristoffersson U, et al. Deletion of chromosome arm 3p in hematologic malignancies. Leukemia. 1997;11(8):1207-13.
Koka R, Mainor CB, Banerjee A, Baer MR, Zou YS. Concomitant amplification of the MLL gene on a ring chromosome and a homogeneously staining region (hsr) in acute myeloid leukemia: mechanistic implications. Leuk Lymphoma. 2017;58(5):1250-3.
Lindvall C, Nordenskjöld M, Porwit A, Björkholm M, Blennow E. Molecular cytogenetic characterization of acute myeloid leukemia and myelodysplastic syndromes with multiple chromosome rearrangements. Haematologica. 2001;86(11):1158-64.
Liozon E, Brigaudeau C, Trimoreau F, et al. Is treatment with hydroxyurea leukemogenic in patients with essential thrombocythemia? An analysis of three new cases of leukaemic transformation and review of the literature. Hematol Cell Ther. 1997;39(1):11-8.
Mamuris Z, Dumont J, Dutrillaux B, Aurias A. Chromosomal differences between acute nonlymphocytic leukemia in patients with prior solid tumors and prior hematologic malignancies. A study of 14 cases with prior breast cancer. Cancer Genet Cytogenet. 1989;42(1):43-50.
Michaux L, Wlodarska I, Stul M, et al. MLL amplification in myeloid leukemias: A study of 14 cases with multiple copies of 11q23. Genes Chromosomes Cancer. 2000;29(1):40-7.
Mrózek K, Heinonen K, Theil KS, Bloomfield CD. Spectral karyotyping in patients with acute myeloid leukemia and a complex karyotype shows hidden aberrations, including recurrent overrepresentation of 21q, 11q, and 22q. Genes Chromosomes Cancer. 2002;34(2):137-53.
Poppe B, Vandesompele J, Schoch C, et al. Expression analyses identify MLL as a prominent target of 11q23 amplification and support an etiologic role for MLL gain of function in myeloid malignancies. Blood. 2004;103(1):229-35.
Sárová I, Brezinová J, Zemanová Z, et al. Cytogenetic manifestation of chromosome 11 duplication/amplification in acute myeloid leukemia. Cancer Genet Cytogenet. 2010;199(2):121-7.
Schoch C, Haferlach T, Bursch S, et al. Loss of genetic material is more common than gain in acute myeloid leucemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH. Genes Chromosomes Cancer. 2002;35(1):20-9.
Streubel B, Valent P, Jäger U, et al. Amplification of the MLL gene on double minutes, a homogenously staining region, and ring chromosomes in five patients with acute myeloid leukemia or myelodysplastic syndrome. Genes Chromosomes Cancer. 2000;27(4):380-6.
Tanaka K, Eguchi M, Eguchi-Ishimae M, et al. Restricted chromosome breakpoint sites on 11q22-q23.1 and 11q25 in various hematological malignancies without MLL/ALL-1 gene rearrangement. Cancer Genet Cytogenet. 2001;124(1):27-35.
Whang-Peng J, Lee EC, Kao-Shan CS, Schechter G. Ring chromosome in a case of acute myelomonocytic leukemia: its significance and a review of the literature. Hematol Pathol. 1987;1(1):57-65.
Zatkova A, Ullmann R, Rouillard JM, et al. Distinct sequences on 11q13.5 and 11q23-24 are frequently coamplified with MLL in complexly organized 11q amplicons in AML/MDS patients. Genes Chromosomes Cancer. 2004;39(4):263-76.
Castillo JJ, Reagan JL, Ingham RR, et al. Obesity but not overweight increases the incidence and mortality of leukemia in adults: a metaanalysis of prospective cohort studies. Leuk Res. 2012;36(7):868-75.
Samanic C, Gridley G, Chow WH, et al. Obesity and cancer risk among white and black United States veterans. Cancer Causes Control. 2004;15(1):35-43.
Wenzell CM, Gallagher EM, Earl M, et al. Outcomes in obese and overweight acute myeloid leukemia patients receiving chemotherapy dosed according to actual body weight. Am J Hematol. 2013;88(10):906-9.
Medeiros BC, Othus M, Estey EH, Fang M, Appelbaum FR. Impact of body-mass index on the outcome of adult patients with acute myeloid leukemia. Haematologica. 2012;97(9):1401-4.
Lin A, Othus M, McQuary A, Chi M, Estey E. Influence of obesity on efficacy and toxicity of induction chemotherapy in patients with newly diagnosed acute myeloid leukemia. Leuk Lymphoma. 2013;54(3):541-6.
Ross JA, Parker E, Blair CK, Cerhan JR, Folsom AR. Body mass index and risk of leukemia in older women. Cancer Epidemiol Biomarkers Prev. 2004;13(11 Pt 1):1810-3.
Finn L, Sproat L, Heckman MG, et al. Epidemiology of adult acute myeloid leukemia: Impact of exposures on clinical phenotypes and outcomes after therapy. Cancer Epidemiol. 2015;39(6):1084-92.
Larsson SC, Wolk A. Overweight and obesity and incidence of leukemia: a meta-analysis of cohort studies. Int J Cancer. 2008;122(6):1418-21.
Tavitian S, Denis A, Vergez F, et al. Impact of obesity in favorable-risk AML patients receiving intensive chemotherapy. Am J Hematol. 2016;91(2):193-8.
Lee HJ, Licht AS, Hyland AJ, et al. Is obesity a prognostic factor for acute myeloid leukemia outcome? Ann Hematol. 2012;91(3):359-65.
Mitterbauer M, Kusec R, Schwarzinger I, et al. Comparison of karyotype analysis and RT-PCR for AML1/ETO in 204 unselected patients with AML. Ann Hematol. 1998;76(3-4):139-43.
Cho EK, Bang SM, Ahn JY, et al. Prognostic value of AML 1/ETO fusion transcripts in patients with acute myelogenous leukemia. Korean J Intern Med. 2003;18(1):13-20.
Sarriera JE, Albitar M, Estrov Z, et al. Comparison of outcome in acute myelogenous leukemia patients with translocation (8;21) found by standard cytogenetic analysis and patients with AML1/ETO fusion transcript found only by PCR testing. Leukemia. 2001;15(1):57-61.
Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007;7(11):823-33.