Does hypericin boost the efficacy of high-power laser? A preliminary experimental study on rats
Keywords:
Hypericum, Lasers, solid-state, Prostatic hyperplasia, Photochemotherapy, EndoscopyAbstract
CONTEXT AND OBJECTIVE: Lasers are widely used in treating symptomatic benign prostatic hyperplasia. In current practice, potassium titanyl phosphate (KTP) lasers are the most common type of laser systems used. The aim here was to evaluate the rapid effect of high-power laser systems after application of hypericin. DESIGN AND SETTING: Experimental animal study conducted in the Department of Urology, Gülhane Military Medical Academy, Ankara, Turkey, in 2012. METHODS: Sixteen rats were randomized into four groups: 120 W KTP laser + hypericin; 120 W KTP laser alone; 80 W KTP laser + hypericin; and 80 W KTP laser alone. Hypericin was given intraperitoneally two hours prior to laser applications. The laser incisions were made through the quadriceps muscle of the rats. The depth and the width of the laser incisions were evaluated histologically and recorded. RESULTS: To standardize the effects of the laser, we used the ratio of depth to width. These new values showed us the depth of the laser application per unit width. The new values acquired were evaluated statistically. Mean depth/width values were 231.6, 173.6, 214.1 and 178.9 in groups 1, 2, 3 and 4, respectively. The most notable result was that higher degrees of tissue penetration were achieved in the groups with hypericin (P < 0.05). CONCLUSIONS: The encouraging results from our preliminary study demonstrated that hypericin may improve the effects of KTP laser applications.
Downloads
References
Malek RS, Nahen K. Photoselective vaporization of the prostate: KTP laser therapy of obstructive benign prostatic hyperplasia. AUA Update Ser. 2004;23:153-60.
Anson K. Could the latest generation potassium titanyl phosphate lasers be the ones to make transurethral resection of the prostate an operation of historical interest only? Curr Opin Urol. 2004;14(1):27-9.
Kasper S. Treatment of seasonal affective disorder (SAD) with hypericum extract. Pharmacopsychiatry. 1997;30 Suppl 2:89-93.
Vitiello B. Hypericum perforatum extracts as potential antidepressants. J Pharm Pharmacol. 1999;51(5):513-7.
Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889-905.
Thomas C, MacGill RS, Miller GC, Pardini RS. Photoactivation of hypericin generates singlet oxygen in mitochondria and inhibits succinoxidase. Photochem Photobiol. 1992;55(1):47-53.
Diwu Z, Lown JW. Photosensitization with anticancer agents. 17. EPR studies of photodynamic action of hypericin: formation of semiquinone radical and activated oxygen species on illumination. Free Radic Biol Med. 1993;14(2):209-15.
Ebermann R, Alth G, Kreitner M, Kubin A. Natural products derived from plants as potential drugs for the photodynamic destruction of tumor cells. J Photochem Photobiol B. 1996;36(2):95-7.
VanderWerf QM, Saxton RE, Chang A, et al. Hypericin: a new laser phototargeting agent for human cancer cells. Laryngoscope. 1996;106(4):479-83.
Chung PS, Rhee CK, Kim KH, et al. Intratumoral hypericin and KTP laser therapy for transplanted squamous cell carcinoma. Laryngoscope. 2000;110(8):1312-6.
Kamuhabwa AA, Roskams T, D‘Hallewin MA, et al. Whole bladder wall photodynamic therapy of transitional cell carcinoma rat bladder tumors using intravesically administered hypericin. Int J Cancer. 2003;107(3):460-7.
Liu CD, Kwan D, Saxton RE, McFadden DW. Hypericin and photodynamic therapy decreases human pancreatic cancer in vitro and in vivo. J Surg Res. 2000;93(1):137-43.
Blank M, Kostenich G, Lavie G, et al. Wavelength-dependent properties of photodynamic therapy using hypericin in vitro and in an animal model. Photochem Photobiol. 2002;76(3):335-40.
Solár P, Cavarga I, Hofmanová J, et al. Effect of acetazolamide on hypericin photocytotoxicity. Planta Med. 2002;68(7):658-60.
Meruelo D, Lavie G, Lavie D. Therapeutic agents with dramatic antiretroviral activity and little toxicity at effective doses: aromatic polycyclic diones hypericin and pseudohypericin. Proc Natl Acad Sci U S A. 1988;85(14):5230-4.
Okpanyi SN, Lidzba H, Scholl BC, Miltenburger HG. Genotoxizität eines standardisierten Hypericum-Extraktes. [Genotoxicity of a standardized Hypericum extract]. Arzneimittelforschung. 1990;40(8):851-5.
Linde K, Ramirez G, Mulrow CD, et al. St John’s wort for depression-
-an overview and meta-analysis of randomised clinical trials. BMJ. 1996;313(7052):253-8.
Koren H, Schenk GM, Jindra RH, et al. Hypericin in phototherapy. J Photochem Photobiol B. 1996;36(2):113-9.
Kubin A, Alth G, Jindra R, Jessner G, Ebermann R. Wavelength- dependent photoresponse of biological and aqueous model systems using the photodynamic plant pigment hypericin. J Photochem Photobiol B. 1996;36(2):103-8.
Fingar VH. Vascular effects of photodynamic therapy. J Clin Laser Med Surg. 1996;14(5):323-8.
Korbelik M. Induction of tumor immunity by photodynamic therapy. J Clin Laser Med Surg. 1996;14(5):329-34.
Vandenbogaerde AL, Geboes KR, Cuveele JF, et al. Antitumour activity of photosensitized hypericin on A431 cell xenografts. Anticancer Res. 1996;16(4A):1619-25.
Chen B, de Witte PA. Photodynamic therapy efficacy and tissue distribution of hypericin in a mouse P388 lymphoma tumor model. Cancer Lett. 2000;150(1):111-7.
Chen B, Xu Y, Roskams T, et al. Efficacy of antitumoral photodynamic therapy with hypericin: relationship between biodistribution and photodynamic effects in the RIF-1 mouse tumor model. Int J Cancer. 2001;93(2):275-82.
Vantieghem A, Assefa Z, Vandenabeele P, et al. Hypericin-induced photosensitization of HeLa cells leads to apoptosis or necrosis. Involvement of cytochrome c and procaspase-3 activation in the mechanism of apoptosis. FEBS Lett. 1998;440(1-2):19-24.
Bachmann A, Ruszat R. The KTP-(greenlight) laser--principles and experiences. Minim Invasive Ther Allied Technol. 2007;16(1):5-10.
Assefa Z, Vantieghem A, Declercq W, et al. The activation of the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signaling pathways protects HeLa cells from apoptosis following photodynamic therapy with hypericin. J Biol Chem. 1999;274(13):8788-96.
Hamilton HB, Hinton DR, Law RE, et al. Inhibition of cellular growth and induction of apoptosis in pituitary adenoma cell lines by the protein kinase C inhibitor hypericin: potential therapeutic application. J Neurosurg. 1996;85(2):329-34.