Biomechanical parameters of gait among transtibial amputees

a review

Authors

  • Alex Sandra Oliveira de Cerqueira Soares Universidade de São Paulo
  • Edward Yuji Yamaguti Universidade de São Paulo
  • Luis Mochizuki Universidade de São Paulo
  • Alberto Carlos Amadio Universidade de São Paulo
  • Júlio Cerca Serrão Universidade de São Paulo

Keywords:

Amputation, Biomechanics, Gait, Rehabilitation, Artificial limbs

Abstract

Rehabilitation for lower-limb amputees needs to focus on restoration of daily functions and independent locomotion. As gait is reestablished, reorganization of the motor pattern takes place in order to optimize the functions of the locomotor system. Biomechanics is a field of study that enables understanding of this reorganization. From such knowledge, appropriate strategies for recovering the autonomy of the means of locomotion can be established. Thus, this paper had the aim of reviewing the current status of the biomechanics of locomotion among unilateral transtibial amputees. To achieve this aim, papers written in English or Portuguese and published up to 2005 were selected from the Cochrane Library, PubMed, Scientific Electronic Library Online (SciELO), Literatura Latino-Americana e do Caribe em Ciências da Saúde (Lilacs) and Dedalus databases. In cases of transtibial amputation, the absence of plantar flexors negatively affects locomotion. Increased absorption and energy generation by the muscles that control the hip joint of the amputated leg can be considered to be the main compensatory strategy developed by unilateral transtibial amputees during gait. Factors associated with the characteristics of the amputation, prosthesis and experimental protocol used directly influence the results.

Downloads

Download data is not yet available.

Author Biographies

Alex Sandra Oliveira de Cerqueira Soares, Universidade de São Paulo

MSc. Assistant professor in the Physiotherapy Department, Universidade de Taubaté (Unitau), Taubaté, São Paulo, Brazil.

Edward Yuji Yamaguti, Universidade de São Paulo

Graduate of Physical Education, School of Physical Education and Sport, Universidade de São Paulo (USP), São Paulo, Brazil.

Luis Mochizuki, Universidade de São Paulo

Graduate of Physical Education, School of Physical Education and Sport, Universidade de São Paulo (USP), São Paulo, Brazil.

Alberto Carlos Amadio, Universidade de São Paulo

PhD. Full professor of the School of Physical Education and Sport, Universidade de São Paulo (USP), São Paulo, Brazil.

Júlio Cerca Serrão, Universidade de São Paulo

PhD. Associate professor in the School of Physical Education and Sport, Universidade de São Paulo (USP), São Paulo, Brazil.

References

Kottke FJ, Lehmann JF, editors. Krusen’s handbook of physical medicine and rehabilitation. 4th ed. Philadelphia: WB Saunders Company; 1990.

Winter DA, Sienko SE. Biomechanics of below-knee amputee gait. J Biomech. 1988;21(5):361-7.

Breakey JM. Gait unilateral below-knee amputees. Orthot Prosthet. 1976;30:17-24.

Robinson JL, Smidt GL, Arora JS. Accelerographic, temporal, and distance gait factors in below-knee amputees. Phys Ther. 1977;57(8):898-904.

Isakov E, Keren O, Benjuya N. Trans-tibial amputee gait: time-distance parameters and EMG activity. Prosthet Orthot Int. 2000;24(3):216-20.

Soares ASOC. Análise de parâmetros biomecânicos da locomoção de atletas amputados transtibiais [Biomechanics analysis of locomotion in transtibial amputee athletes]. [disser- tation]. Escola de Educação Física e Esporte da Universidade de São Paulo; 2005.

Isakov E, Burger H, Krajnik J, Gregoric M, Marincek C. Influence of speed on gait parameters and symmetry in trans-tibial amputees. Prosthet Orthot Int. 1996;20(3):153-8.

Baker PA, Hewison SR. Gait recovery pattern of unilateral lower limb amputees during reha- bilitation. Prosthet Orthot Int. 1990;14(2):80-4.

Dingwell JB, Davis BL, Frazier DM. Use of an instrumented treadmill for real-time gait sym- metry evaluation and feedback in normal and trans-tibial amputee subjects. Prosthet Orthot Int. 1996;20(2):101-10.

Gitter A, Czerniecki JM, DeGroot DM. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. Am J Phys Med Rehabil. 1991;70(3):142-8.

Sanderson DJ, Tokuno CD. Electromyography of knee-joint muscles in unilateral below-knee amputees during walking and running. In: Proceedings of the 4th World Congress of Biome- chanics; 2002 Aug 4-9; Calgary (CA). Calgary: Omnipress; 2002.

Menard MR, McBride ME, Sanderson DJ, Murray DD. Comparative biomechanical analysis of energy-storing prosthetic feet. Arch Phys Med Rehabil. 1992;73(5):451-8.

Barth DG, Schumacher L, Thomas SS. Gait analysis and energy cost of below-knee ampute- es wearing six different prosthetic feet. J Prosthet Orthot 1992;4(2):63-75. Available from: http://www.oandp.org/jpo/library/1992_02_063.asp. Accessed in 2009 (Oct 20).

Tonon SC, Avila AOV. Gait analysis in amputees with different levels of amputation. Rev Bras Biomec = Braz J Biomech. 2000;1(1):27-31.

Mizuno N, Aoyama T, Nakajima A, Kasahara T, Takami K. Functional evaluation by gait analysis of various ankle-foot assemblies used below-knee amputees. Prosthet Orthot Int. 1992;16(3):174-82.

Isakov E, Burger H, Krajnik J, Gregoric M, Marincek C. Knee muscle activity during ambulation of trans-tibial amputees. J Rehabil Med. 2001;33(5):196-9.

Soares ASOC, Serrão JC, Amadio AC. Características eletromiográficas e dinâmicas da mar- cha de amputados transtibiais com a utilização de calçados esportivos. Braz J Biomech 2003;4(Suppl 1):55-61.

Powers CM,Torburn L, Perry J,Ayyappa E. Influence of prosthetic foot design on sound limb loading in adults with unilateral below-knee amputations. Arch Phys Med Rehabil. 1994;75(7):825-9.

Torburn L, Perry J, Ayyappa E, Shanfield SL. Below-knee amputee gait with dynamic elastic response prosthetic feet: a pilot study. J Rehabil Res Dev. 1990;27(4):369-84.

Prince F, Winter DA, Sjonnensen G, Powell C, Wheeldon RK. Mechanical efficiency during gait of adults with transtibial amputation: a pilot study comparing the SACH, Seattle, and Golden-Ankle prosthetic feet. J Rehabil Res Dev. 1998;35(2):177-85.

Hsu MJ, Nielsen DH, Lin-Chan SJ, Shurr D. The effects of prosthetic foot design on phy- siologic measurements, self-selected walking velocity, and physical activity in people with transtibial amputation. Arch Phys Med Rehabil. 2006;87(1):123-9.

Andersen-Ranberg F, Jørgensen U. Meniscal tear in a below-knee amputee. Acta Orthop Belg. 1987;53(4):514-6.

Lewallen R, Dyck G, Quanbury A, Ross K, Letts M. Gait kinematics in below-knee child amputees: a force plate analysis. J Pediatr Orthop. 1986;6(3):291-8.

Hurley GR, McKenney R, Robinson M, Zadravec M, Pierrynowski MR. The role of the contra- lateral limb in below-knee amputee gait. Prosthet Orthot Int. 1990;14(1):33-42.

Zmitrewicz RJ, Neptune RR, Walden JG, Rogers WE, Bosker GW. The effect of foot and ankle prosthetic components on braking and propulsive impulses during transtibial amputee gait. Arch Phys Med Rehabil. 2006;87(10):1334-9.

Vrieling AH, van Keeken HG, Schoppen T, et al. Gait initiation in lower limb amputees. Gait Posture. 2008;27(3):423-30.

Vrieling AH, van Keeken HG, Schoppen T, et al. Gait termination in lower limb amputees. Gait Posture. 2008;27(1):82-90.

Jones SF, Twigg PC, Scally AJ, Buckley JG. The gait initiation process in unilateral lower-limb amputees when stepping up and stepping down to a new level. Clin Biomech (Bristol, Avon). 2005;20(4):405-13.

Vrieling AH, van Keeken HG, Schoppen T, et al. Obstacle crossing in lower limb amputees. Gait Posture. 2007;26(4):587-94.

Winter DA. The locomotion laboratory as a clinical assessment system. Med Prog Technol. 1976;4(3):95-106.

Culham EG, Peat M, Newell E. Below-knee amputation: a comparison of the effect of the SACH foot and single axis foot on electromyographic patterns during locomotion. Prosthet Orthot Int. 1986;10(1):15-22.

RAB GT. Músculos. In: Rose J, Gamble JG, editors. Marcha humana. 2a ed. São Paulo: Pre- mier; 1998. p.107-28.

Vickers DR, Palk C, McIntosh AS, Beatty KT. Elderly unilateral transtibial amputee gait on an inclined walkway: a biomechanical analysis. Gait Posture. 2008;27(3):518-29.

Au S, Berniker M, Herr H. Powered ankle-foot prosthesis to assist level-ground and stair- descent gaits. Neural Netw. 2008;21(4)654-66.

Hofstad C, Van der Linde H, Van Limbeek J, Postema K. Prescripción de mecanismos pro- tésicos para tobillo y pie después de la amputación de miembros inferiores (Revisión Cochrane traducida). La Biblioteca Cochrane Plus. 2008;3. Available from: http://www. update-software.com/AbstractsES/ab003978-ES.htm. Accessed in 2009 (Oct 20).

Hughes J, Jacobs N. Normal human locomotion. Prosthet Orthot Int. 1979;3(1):4-12.

Saleh M, Murdoch G. In defence of gait analysis. Observation and measurement in gait assessment. J Bone Joint Surg Br. 1985;67(2):237-41.

Skinner HB, Effeney DJ. Gait analysis in amputees. Am J Phys Med. 1985;64(2):82-9.

Lemaire ED, Fisher FR, Robertson DG. Gait patterns of elderly men with trans-tibial amputa- tions. Prosthet Orthot Int. 1993;17(1):27-37.

Czerniecki JM. Rehabilitation in limb deficiency. 1. Gait and motion analysis. Arch Phys Med Rehabil. 1996;77(3 Suppl):S3-8.

Selles RW, Bussmann JB, Wagenaar RC, Stam HJ. Effects of prosthetic mass and mass distribution on kinematics and energetics of prosthetic gait: a systematic review. Arch Phys Med Rehabil. 1999;80(12):1593-9.

Rietman JS, Postema K, Geertzen JH. Gait analysis in prosthetics: opinions, ideas and con- clusions. Prosthet Orthot Int. 2002;26(1):50-7.

Downloads

Published

2009-09-09

How to Cite

1.
Soares ASO de C, Yamaguti EY, Mochizuki L, Amadio AC, Serrão JC. Biomechanical parameters of gait among transtibial amputees: a review. Sao Paulo Med J [Internet]. 2009 Sep. 9 [cited 2025 Mar. 9];127(5):302-9. Available from: https://periodicosapm.emnuvens.com.br/spmj/article/view/1901

Issue

Section

Review Article