Habitual physical activity and sedentary behavior as predictors of dynapenia in older adults: a cross-sectional study

Autores

Palavras-chave:

Motor activity, Aging, Epidemiology, Sedentary behavior, Muscle strength, Aged, Sitting time, Grip strength, Physical activities, Sedentary time, Elderly

Resumo

BACKGROUND: Dynapenia is a risk factor of mortality. Therefore, the development of low-cost and easy-to-apply tools is essential to optimize the health surveillance actions of older people.
OBJECTIVES: To compare the time spent on habitual physical activity (HPA) and sedentary behavior (SB) among dynapenic and non-dynapenic older adults and ascertain the predictive ability of these behaviors on outcome.
DESIGN AND SETTING: A cross-sectional population epidemiological survey was conducted involving 208 older adults.
METHODS: HPA and SB were quantified using the International Physical Activity Questionnaire, and dynapenia was identified by handgrip strength (women: 18.37 kgf; men: 26.75 kgf).
RESULTS: The prevalence was 24.50%. In both sexes, dynapenic individuals reported a HPA median time of 70.00 minutes/week (min/wk), while non-dynapenic women and men reported HPA median times of 240.00 and 280.00 min/wk, respectively (P < 0.05). For SB among dynapenic individuals, a median of 388.75 min/day was observed in women and 428.57 min/d in men. In contrast, non-dynapenic women and men had 291.42 and 274.28 min/day in SB (P < 0.05), respectively. The best cutoff HPA to discriminate the outcome was 150.00 min/wk in women (sensitivity: 73.30%; specificity: 60.67%) and 140.00 min/wk in men (sensitivity, 71.43%; specificity, 61.54%). The best cutoff SB was 381.43 min/day in women (sensitivity, 53.30%; specificity, 84.80%) and 351.43 min/day in men (sensitivity, 71.43%; specificity, 73.85%).
CONCLUSION: Older individuals with dynapenia spent less time on HPA and more time in SB. Furthermore, HPA was found to be a better discriminator of dynapenic individuals, and SB better discriminated non-dynapenic individuals.

Downloads

Não há dados estatísticos.

Biografia do Autor

Lucas dos Santos, Universidade Estadual do Tocantins, Augustinópolis, Tocantins, Brazil

MSc. Professor, Medicine Course, Universidade Estadual do Tocantins (UNITINS), Augustinópolis (TO), Brazil.

Cláudio Bispo de Almeida, Universidade do Estado da Bahia, Guanambi, Bahia, Brazil

PhD. Professor, Physical Education Course, Graduate Program in Teaching, Language and Society, Universidade do Estado da Bahia (UNEB), Guanambi (BA), Brazil.

Paulo da Fonseca Valença Neto, Ministry of Health, Brasília Distrito Federal, Brazil

MSc. Technical Consultant, Health Sciences, Department of Monitoring, Evaluation and Dissemination of Strategic Health Information (DEMAS), Secretariat of Information and Digital Health, Ministry of Health (MS), Brasília (DF), Brazil.

Rizia Rocha Silva, Universidade Federal de Goiás, Goiânia, Goiás, Brazil

MSc. PhD Student, Postgraduate Program in Health Sciences, Universidade Federal de Goiás (UFG), Goiânia (GO), Brazil.

Isaac Costa Santos, Universidade Estadual do Sudoeste da Bahia, Jequié, Bahia, Brazil

BS. Physical Education Professional, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié (BA), Brazil.

Cezar Augusto Casotti, Universidade Estadual do Sudoeste da Bahia, Jequié, Bahia, Brazil

PhD. Professor, Dentistry Course, Graduate Program in Nursing and Health, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié (BA), Brazil.

Referências

Azzolino D, Spolidoro GCI, Saporiti E, et al. Musculoskeletal changes across the lifespan: nutrition and the life-course approach to prevention. Front Med. 2021;8:697954. PMID: 34532328; https://doi.org/10.3389/ fmed.2021.697954.

Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018;9(1):3-19. PMID: 29151281; https://doi.org/10.1002/jcsm.12238.

Distefano G, Goodpaster BH. Effects of exercise and aging on skeletal muscle. Cold Spring Harb Perspect Med. 2018;8(3):a029785. PMID: 28432116; https://doi.org/10.1101/cshperspect.a029785.

Clark BC, Manini TM. Sarcopenia ≠ Dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63(8):829-34. PMID: 18772470; https://doi.org/10.1093/ gerona/63.8.829.

Santos L, Miranda CGM, Souza TCB, et al. Body composition of women with and without dynapenia defined by different cut-off points. Rev Nutr. 2021;34:e200084. https://doi.org/10.1590/1678-9865202134e200084.

Bertoni M, Maggi S, Manzato E, Veronese N, Weber G. Depressive symptoms and muscle weakness: A two-way relation? Exp Gerontol.

;108:87-91. PMID: 29627421; https://doi.org/10.1016/j. exger.2018.04.001.

Noh HM, Park YS. Handgrip strength, dynapenia, and mental health in older Koreans. Sci Rep. 2020;10(1):4004. PMID: 32132581; https://doi. org/10.1038/s41598-020-60835-4.

Tessier AJ, Wing SS, Rahme E, Morais JA, Chevalier S. Physical functionderived cut-points for the diagnosis of sarcopenia and dynapenia from the Canadian longitudinal study on aging. J Cachexia Sarcopenia Muscle. 2019;10(5):985-99. PMID: 31307126; https://doi.org/10.1002/jcsm.12462.

Borges VS, Lima-Costa MFF, de Andrade FB. A nationwide study on prevalence and factors associated with dynapenia in older adults: Elsi-Brazil. Cad Saude Publica. 2020;36(4):e00107319. PMID: 32374810; https://doi.org/10.1590/0102-311x00107319.

Alexandre T da S, Duarte YA de O, Santos JLF, Lebrão ML. Prevalência e fatores associados à sarcopenia, dinapenia e sarcodinapenia em idosos residentes no Município de São Paulo - Estudo SABE. Rev Bras Epidemiol. 2018;21(suppl 2):e180009. https://doi.org/10.1590/1980549720180009.supl.2.

Pereira AVN, Santos L, Pedreira RBS, et al. Prevalence and factors associated with dynapenia in older women using different diagnostic criteria. Motriz. 2022;28:e10220005822. https://doi.org/10.1590/s1980657420220005822.

Scott D, Daly RM, Sanders KM, Ebeling PR. Fall and Fracture Risk in Sarcopenia and Dynapenia With and Without Obesity: the Role of Lifestyle Interventions. Curr Osteoporos Rep. 2015;13(4):235-44. PMID: 26040576; https://doi.org/10.1007/s11914-015-0274-z.

Li R, Xia J, Zhang XI, et al. Associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sports Exerc. 2018;50(3):458-67. PMID: 28991040; https://doi.org/10.1249/ mss.0000000000001448.

Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. PMID: 30312372; https://doi.org/10.1093/ageing/afy169.

Silva RR, Galvão LL, Meneguci J, et al. Dynapenia in all-cause mortality and its relationship with sedentary behavior in community-dwelling older adults. Sports Med Health Sci. 2022;4(4):253-9. PMID: 36600974; https://doi.org/10.1016/j.smhs.2022.09.002.

García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, et al. Muscular strength as a predictor of all-cause mortality in an apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil.

;99(10):2100-13.e5. PMID: 29425700; https://doi.org/10.1016/j. apmr.2018.01.008.

Santos L, Miranda CGM, Silva IES, et al. Anthropometric indicators as predictors of dynapenia in postmenopausal women. Motriz. 2022;28:e10220001522. http://doi.org/10.1590/s1980657420220001522.

Soares VDM, Fernandes MH, Queiroz BM, et al. Análise comparativa entre dinamometria e equações antropométricas preditoras da força de preensão manual em idosos. Rev Bras Ciência Mov. 2019;27(1):11-7. http://doi.org/10.31501/rbcm.v27i1.7951.

Ramsey KA, Rojer AGM, D’Andrea L, et al. The association of objectively measured physical activity and sedentary behavior with skeletal muscle strength and muscle power in older adults: a systematic review and meta-analysis. Ageing Res Rev. 2021;67:101266. PMID: 33607291; https:// doi.org/10.1016/j.arr.2021.101266.

Santos L, Silva RR, Santana PS, et al. Factors associated with dynapenia in older adults in the Northeast of Brazil. J Phys Educ. 2022;33:e-3342. https://doi.org/10.4025/jphyseduc.v33i1.3342.

Craig CL, Marshall AL, Sjöström M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc.

;35(8):1381-95. PMID: 12900694; https://doi.org/10.1249/01.

mss.0000078924.61453.fb.

Benedetti TRB, Antunes PC, Rodriguez-Añez CR, Mazo GZ, Petroski EL. Reprodutibilidade e validade do Questionário Internacional de Atividade Física (IPAQ) em homens idosos. Rev Bras Med Esporte. 2007;13(1):11-6. https://doi.org/10.1590/S1517-86922007000100004.

Benedetti TB, Mazo GZ, Barros MVG. Aplicação do Questionário Internacional de Atividades Físicas para avaliação do nível de atividades físicas de mulheres idosas: validade concorrente e reprodutibilidade teste-reteste. Application of the International Physical Activity Questionnaire (IPAQ). Rev Bras Ciência e Mov. 2004;12(1):25-34. https:// doi.org/10.18511/rbcm.v12i1.538.

Casotti CA, Almeida CB, Santos L, Valença Neto PF, Carmo TB. Condições de saúde e estilo de vida de idosos: métodos e desenvolvimento do estudo. Prát Cuid Rev Saúde Colet. 2021;2:e12643. Available from: https://www.revistas.uneb.br/index.php/saudecoletiva/article/ view/12643/8597. Accessed in 2023 (Jan 4).

Alves CSS, Santos L, Valença Neto PF, et al. Indicadores antropométricos de obesidade em idosos: dados do estudo base. RBONE. 2021;15(93):27080. Available from: http://www.rbone.com.br/index.php/rbone/article/ view/1694. Accessed in 2023 (Jan. 4).

Icaza MG, Albala C. Minimental State Examinations (MMSE) del estudio de demencia en Chile : análisis estadístico. Washington: PAHO; 1999. Available from: http://www.paho.org/spanish/hdp/hdr/ serie07composite.pdf. Accessed in 2023 (Jan. 4).

Bertolucci PH, Brucki SM, Campacci SR, Juliano Y. The Mini-Mental State Examination in a general population: impact of educational status. Arq Neuropsiquiatr. 1994;52(1):01-07. PMID: 8002795; https:// doi.org/10.1590/S0004-282X1994000100001.

Santos L, Santana PS, Caires SS, et al. Força e massa muscular em idosos do Nordeste brasileiro. Res Soc Dev. 2021;10(14):e570101422270. https:// doi.org/10.33448/rsd-v10i14.22270.

Lee RC, Wang Z, Heo M, et al. Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am J Clin Nutr. 2000;72(3):796-803. PMID: 10966902; https:// doi.org/10.1093/ajcn/72.3.796.

Rech CR, Dellagrana RA, Marucci MFN, Petroski EL. Validity of anthropometric equations for the estimation of muscle mass in the elderly. RBCDH. 2012;14(1):23-31. Available from: https://periodicos.ufsc. br/index.php/rbcdh/article/view/1980-0037.2012v14n1p23. Accessed in 2023 (March 8).

Figueiredo IM, Sampaio RF, Mancini MC, Silva FCM, Souza MAP. Test of grip strength using the Jamar dynamometer. Acta Fisiátrica. 2007;14(2):104-110. https://doi.org/10.5935/0104-7795.20070002.

DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837-45. PMID: 3203132; https://doi.org/10.2307/2531595.

Borges LSR. Diagnostic accuracy measures in cardiovascular research. Int J Cardiovasc Sci. 2016;29(3):218-22.

Le Roux E, De Jong NP, Blanc S, et al. Physiology of physical inactivity, sedentary behaviours and non-exercise activity: insights from the space bedrest model. J Physiol. 2022;600(5):1037-51. PMID: 33501660; https://doi.org/10.1113/jp281064.

Reid N, Healy GN, Gianoudis J, et al. Association of sitting time and breaks in sitting with muscle mass, strength, function, and inflammation in community-dwelling older adults. Osteoporos Int. 2018;29(6):1341-50. PMID: 29479645; https://doi.org/10.1007/ s00198-018-4428-6.

Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451-62. PMID: 33239350; https://doi.org/10.1136/ bjsports-2020-102955.

Fragala MS, Cadore EL, Dorgo S, et al. Resistance training for older adults: position statement from the National Strength and Conditioning Association. J strength Cond Res. 2019;33(8):2019-52. PMID: 31343601; https://doi.org/10.1519/jsc.0000000000003230.

Sardinha LB, Santos DA, Silva AM, Baptista F, Owen N. Breaking-up sedentary time is associated with physical function in older adults. J Gerontol A Biol Sci Med Sci. 2015;70(1):119-24. PMID: 25324221; https:// doi.org/10.1093/gerona/glu193.

Gao Y, Silvennoinen M, Pesola AJ, et al. acute metabolic response, energy expenditure, and EMG activity in sitting and standing. Med Sci Sports Exerc. 2017;49(9):1927-34. PMID: 28463899; https://doi.org/10.1249/ mss.0000000000001305.

Downloads

Publicado

2025-03-24

Como Citar

1.
Santos L dos, Almeida CB de, Valença Neto P da F, Silva RR, Santos IC, Casotti CA. Habitual physical activity and sedentary behavior as predictors of dynapenia in older adults: a cross-sectional study. Sao Paulo Med J [Internet]. 24º de março de 2025 [citado 15º de outubro de 2025];142(1):1-8. Disponível em: https://periodicosapm.emnuvens.com.br/spmj/article/view/2991

Edição

Seção

Artigo Original