Habitual physical activity and sedentary behavior as predictors of dynapenia in older adults: a cross-sectional study
Palavras-chave:
Motor activity, Aging, Epidemiology, Sedentary behavior, Muscle strength, Aged, Sitting time, Grip strength, Physical activities, Sedentary time, ElderlyResumo
BACKGROUND: Dynapenia is a risk factor of mortality. Therefore, the development of low-cost and easy-to-apply tools is essential to optimize the health surveillance actions of older people.
OBJECTIVES: To compare the time spent on habitual physical activity (HPA) and sedentary behavior (SB) among dynapenic and non-dynapenic older adults and ascertain the predictive ability of these behaviors on outcome.
DESIGN AND SETTING: A cross-sectional population epidemiological survey was conducted involving 208 older adults.
METHODS: HPA and SB were quantified using the International Physical Activity Questionnaire, and dynapenia was identified by handgrip strength (women: 18.37 kgf; men: 26.75 kgf).
RESULTS: The prevalence was 24.50%. In both sexes, dynapenic individuals reported a HPA median time of 70.00 minutes/week (min/wk), while non-dynapenic women and men reported HPA median times of 240.00 and 280.00 min/wk, respectively (P < 0.05). For SB among dynapenic individuals, a median of 388.75 min/day was observed in women and 428.57 min/d in men. In contrast, non-dynapenic women and men had 291.42 and 274.28 min/day in SB (P < 0.05), respectively. The best cutoff HPA to discriminate the outcome was 150.00 min/wk in women (sensitivity: 73.30%; specificity: 60.67%) and 140.00 min/wk in men (sensitivity, 71.43%; specificity, 61.54%). The best cutoff SB was 381.43 min/day in women (sensitivity, 53.30%; specificity, 84.80%) and 351.43 min/day in men (sensitivity, 71.43%; specificity, 73.85%).
CONCLUSION: Older individuals with dynapenia spent less time on HPA and more time in SB. Furthermore, HPA was found to be a better discriminator of dynapenic individuals, and SB better discriminated non-dynapenic individuals.
Downloads
Referências
Azzolino D, Spolidoro GCI, Saporiti E, et al. Musculoskeletal changes across the lifespan: nutrition and the life-course approach to prevention. Front Med. 2021;8:697954. PMID: 34532328; https://doi.org/10.3389/ fmed.2021.697954.
Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018;9(1):3-19. PMID: 29151281; https://doi.org/10.1002/jcsm.12238.
Distefano G, Goodpaster BH. Effects of exercise and aging on skeletal muscle. Cold Spring Harb Perspect Med. 2018;8(3):a029785. PMID: 28432116; https://doi.org/10.1101/cshperspect.a029785.
Clark BC, Manini TM. Sarcopenia ≠ Dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63(8):829-34. PMID: 18772470; https://doi.org/10.1093/ gerona/63.8.829.
Santos L, Miranda CGM, Souza TCB, et al. Body composition of women with and without dynapenia defined by different cut-off points. Rev Nutr. 2021;34:e200084. https://doi.org/10.1590/1678-9865202134e200084.
Bertoni M, Maggi S, Manzato E, Veronese N, Weber G. Depressive symptoms and muscle weakness: A two-way relation? Exp Gerontol.
;108:87-91. PMID: 29627421; https://doi.org/10.1016/j. exger.2018.04.001.
Noh HM, Park YS. Handgrip strength, dynapenia, and mental health in older Koreans. Sci Rep. 2020;10(1):4004. PMID: 32132581; https://doi. org/10.1038/s41598-020-60835-4.
Tessier AJ, Wing SS, Rahme E, Morais JA, Chevalier S. Physical functionderived cut-points for the diagnosis of sarcopenia and dynapenia from the Canadian longitudinal study on aging. J Cachexia Sarcopenia Muscle. 2019;10(5):985-99. PMID: 31307126; https://doi.org/10.1002/jcsm.12462.
Borges VS, Lima-Costa MFF, de Andrade FB. A nationwide study on prevalence and factors associated with dynapenia in older adults: Elsi-Brazil. Cad Saude Publica. 2020;36(4):e00107319. PMID: 32374810; https://doi.org/10.1590/0102-311x00107319.
Alexandre T da S, Duarte YA de O, Santos JLF, Lebrão ML. Prevalência e fatores associados à sarcopenia, dinapenia e sarcodinapenia em idosos residentes no Município de São Paulo - Estudo SABE. Rev Bras Epidemiol. 2018;21(suppl 2):e180009. https://doi.org/10.1590/1980549720180009.supl.2.
Pereira AVN, Santos L, Pedreira RBS, et al. Prevalence and factors associated with dynapenia in older women using different diagnostic criteria. Motriz. 2022;28:e10220005822. https://doi.org/10.1590/s1980657420220005822.
Scott D, Daly RM, Sanders KM, Ebeling PR. Fall and Fracture Risk in Sarcopenia and Dynapenia With and Without Obesity: the Role of Lifestyle Interventions. Curr Osteoporos Rep. 2015;13(4):235-44. PMID: 26040576; https://doi.org/10.1007/s11914-015-0274-z.
Li R, Xia J, Zhang XI, et al. Associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sports Exerc. 2018;50(3):458-67. PMID: 28991040; https://doi.org/10.1249/ mss.0000000000001448.
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. PMID: 30312372; https://doi.org/10.1093/ageing/afy169.
Silva RR, Galvão LL, Meneguci J, et al. Dynapenia in all-cause mortality and its relationship with sedentary behavior in community-dwelling older adults. Sports Med Health Sci. 2022;4(4):253-9. PMID: 36600974; https://doi.org/10.1016/j.smhs.2022.09.002.
García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, et al. Muscular strength as a predictor of all-cause mortality in an apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil.
;99(10):2100-13.e5. PMID: 29425700; https://doi.org/10.1016/j. apmr.2018.01.008.
Santos L, Miranda CGM, Silva IES, et al. Anthropometric indicators as predictors of dynapenia in postmenopausal women. Motriz. 2022;28:e10220001522. http://doi.org/10.1590/s1980657420220001522.
Soares VDM, Fernandes MH, Queiroz BM, et al. Análise comparativa entre dinamometria e equações antropométricas preditoras da força de preensão manual em idosos. Rev Bras Ciência Mov. 2019;27(1):11-7. http://doi.org/10.31501/rbcm.v27i1.7951.
Ramsey KA, Rojer AGM, D’Andrea L, et al. The association of objectively measured physical activity and sedentary behavior with skeletal muscle strength and muscle power in older adults: a systematic review and meta-analysis. Ageing Res Rev. 2021;67:101266. PMID: 33607291; https:// doi.org/10.1016/j.arr.2021.101266.
Santos L, Silva RR, Santana PS, et al. Factors associated with dynapenia in older adults in the Northeast of Brazil. J Phys Educ. 2022;33:e-3342. https://doi.org/10.4025/jphyseduc.v33i1.3342.
Craig CL, Marshall AL, Sjöström M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc.
;35(8):1381-95. PMID: 12900694; https://doi.org/10.1249/01.
mss.0000078924.61453.fb.
Benedetti TRB, Antunes PC, Rodriguez-Añez CR, Mazo GZ, Petroski EL. Reprodutibilidade e validade do Questionário Internacional de Atividade Física (IPAQ) em homens idosos. Rev Bras Med Esporte. 2007;13(1):11-6. https://doi.org/10.1590/S1517-86922007000100004.
Benedetti TB, Mazo GZ, Barros MVG. Aplicação do Questionário Internacional de Atividades Físicas para avaliação do nível de atividades físicas de mulheres idosas: validade concorrente e reprodutibilidade teste-reteste. Application of the International Physical Activity Questionnaire (IPAQ). Rev Bras Ciência e Mov. 2004;12(1):25-34. https:// doi.org/10.18511/rbcm.v12i1.538.
Casotti CA, Almeida CB, Santos L, Valença Neto PF, Carmo TB. Condições de saúde e estilo de vida de idosos: métodos e desenvolvimento do estudo. Prát Cuid Rev Saúde Colet. 2021;2:e12643. Available from: https://www.revistas.uneb.br/index.php/saudecoletiva/article/ view/12643/8597. Accessed in 2023 (Jan 4).
Alves CSS, Santos L, Valença Neto PF, et al. Indicadores antropométricos de obesidade em idosos: dados do estudo base. RBONE. 2021;15(93):27080. Available from: http://www.rbone.com.br/index.php/rbone/article/ view/1694. Accessed in 2023 (Jan. 4).
Icaza MG, Albala C. Minimental State Examinations (MMSE) del estudio de demencia en Chile : análisis estadístico. Washington: PAHO; 1999. Available from: http://www.paho.org/spanish/hdp/hdr/ serie07composite.pdf. Accessed in 2023 (Jan. 4).
Bertolucci PH, Brucki SM, Campacci SR, Juliano Y. The Mini-Mental State Examination in a general population: impact of educational status. Arq Neuropsiquiatr. 1994;52(1):01-07. PMID: 8002795; https:// doi.org/10.1590/S0004-282X1994000100001.
Santos L, Santana PS, Caires SS, et al. Força e massa muscular em idosos do Nordeste brasileiro. Res Soc Dev. 2021;10(14):e570101422270. https:// doi.org/10.33448/rsd-v10i14.22270.
Lee RC, Wang Z, Heo M, et al. Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models. Am J Clin Nutr. 2000;72(3):796-803. PMID: 10966902; https:// doi.org/10.1093/ajcn/72.3.796.
Rech CR, Dellagrana RA, Marucci MFN, Petroski EL. Validity of anthropometric equations for the estimation of muscle mass in the elderly. RBCDH. 2012;14(1):23-31. Available from: https://periodicos.ufsc. br/index.php/rbcdh/article/view/1980-0037.2012v14n1p23. Accessed in 2023 (March 8).
Figueiredo IM, Sampaio RF, Mancini MC, Silva FCM, Souza MAP. Test of grip strength using the Jamar dynamometer. Acta Fisiátrica. 2007;14(2):104-110. https://doi.org/10.5935/0104-7795.20070002.
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837-45. PMID: 3203132; https://doi.org/10.2307/2531595.
Borges LSR. Diagnostic accuracy measures in cardiovascular research. Int J Cardiovasc Sci. 2016;29(3):218-22.
Le Roux E, De Jong NP, Blanc S, et al. Physiology of physical inactivity, sedentary behaviours and non-exercise activity: insights from the space bedrest model. J Physiol. 2022;600(5):1037-51. PMID: 33501660; https://doi.org/10.1113/jp281064.
Reid N, Healy GN, Gianoudis J, et al. Association of sitting time and breaks in sitting with muscle mass, strength, function, and inflammation in community-dwelling older adults. Osteoporos Int. 2018;29(6):1341-50. PMID: 29479645; https://doi.org/10.1007/ s00198-018-4428-6.
Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451-62. PMID: 33239350; https://doi.org/10.1136/ bjsports-2020-102955.
Fragala MS, Cadore EL, Dorgo S, et al. Resistance training for older adults: position statement from the National Strength and Conditioning Association. J strength Cond Res. 2019;33(8):2019-52. PMID: 31343601; https://doi.org/10.1519/jsc.0000000000003230.
Sardinha LB, Santos DA, Silva AM, Baptista F, Owen N. Breaking-up sedentary time is associated with physical function in older adults. J Gerontol A Biol Sci Med Sci. 2015;70(1):119-24. PMID: 25324221; https:// doi.org/10.1093/gerona/glu193.
Gao Y, Silvennoinen M, Pesola AJ, et al. acute metabolic response, energy expenditure, and EMG activity in sitting and standing. Med Sci Sports Exerc. 2017;49(9):1927-34. PMID: 28463899; https://doi.org/10.1249/ mss.0000000000001305.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 São Paulo Medical Journal

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.