Effect of N-acetyl cysteine, rifampicin, and ozone on biofilm formation in pan-resistant Klebsiella pneumoniae: an experimental study
Palavras-chave:
Klebsiella pneumoniae, Biofilms, Ozone, Laser scanning confocal microscopy, Quantitative demonstration of biofilm formation, Pan-drug resistanceResumo
BACKGROUND: To the best of our knowledge, this is the first study to evaluate the effectiveness of specific concentrations of antibiofilm agents, such as N-acetyl cysteine (NAC), rifampicin, and ozone, for the treatment of pan-resistant Klebsiella pneumoniae (PRKp).
OBJECTIVES: We evaluated the effectiveness of antibiofilm agents, such as NAC, rifampicin, and ozone, on biofilm formation in PRKp at 2, 6, 24, and 72 h.
DESIGN AND SETTING: This single-center experimental study was conducted on June 15, 2017, and July 15, 2018, at Istanbul Faculty of Medicine, Istanbul University, Türkiye.
METHODS: Biofilm formation and the efficacy of these agents on the biofilm layer were demonstrated using colony counting and laser-screened confocal microscopy.
RESULTS: NAC at a final concentration of 2 μg/mL was administered to bacteria that formed biofilms (24 h), and no significant decrease was detected in the bacterial counts of all isolates (all P > 0.05). Rifampicin with a final concentration of 0.1 μg/mL was administered to bacteria that formed biofilm (24 h), and no significant decrease was detected in bacterial count (all P > 0.05). Notably, ozonated water of even 4.78 mg/L concentration for 72 h decreased the bacterial count by ≥ 2 log10.
CONCLUSION: Different approaches are needed for treating PRKp isolates. We demonstrate that PRKp isolates can be successfully treated with higher concentrations of ozone.
Downloads
Referências
Wang CH, Hsieh YH, Powers ZM, Kao CY. Defeating Antibiotic-Resistant Bacteria: Exploring Alternative Therapies for a Post-Antibiotic Era. Int J Mol Sci. 2020;21(3):1061. PMID: 32033477; https://doi.org/10.3390/ijms21031061.
Francolini I, Donelli G. Prevention and control of biofilm-based medicaldevice-related infections. FEMS Immuology Med Microbiol. 2010;59(3):227-38. PMID: 20412300; https://doi.org/10.1111/j.1574-695x.2010.00665.x.
European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoints tables for interpretation of MICs and zone diameters. Version 9. 2019. Available from: https://www.eucast.org/clinical_breakpoints. Accessed in 2023 (November 21).
Ceri H, Olson ME, Stremick C, et al. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 1999;37(6):1771-6. PMID: 10325322; https://doi.org/10.1128/jcm.37.6.1771-1776.1999.
Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms.
Int J Med Microbiol. 2002;292(2): 107-13. PMID: 12195733; https://doi. org/10.1078/1438-4221-00196.
Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13(1):34-40. PMID: 15639630; https://doi.org/10.1016/j.tim.2004.11.010.
Dosler S, Karaaslan E, Gerceker AA. Antibacterial and anti-biofilm activities of melittin and colistin, alone and in combination with antibiotics against Gram-negative bacteria. J Chemother 2016;28(2):95-103. PMID: 25801062; https://doi.org/10.1179/1973947815y.0000000004.
Poirel L, Heritier C, Tolun V, Nordmann P. Emergence of oxacillinasemediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48(1):15-22. PMID: 14693513; https://doi. org/10.1128/aac.48.1.15-22.2004.
Hidalgo L, Hopkins KL, Gutierrez B, et al. Association of the novel aminoglycoside resistance determinant RmtF with NDM carbapenemase in Enterobacteriaceae isolated in India and the UK. J Antimicrob Chemother. 2013;68(7):1543-50. PMID: 23580560; https:// doi.org/10.1093/jac/dkt078.
Poirel L, Naas T, Le Thomas I, et al. CTX-M-type extended-spectrum beta-lactamase that hydrolyzes ceftazidime through a single amino acid substitution in the omega loop. Antimicrob Agents Chemother. 2001;45(12):3355-61. PMID: 11709308; https://doi.org/10.1128/aac.45.12.3355-3361.2001.
Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. PMID: 21793988; https://doi.org/10.1111/j.1469-0691.2011.03570.x.
Martin RM, Bachman MA. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol. 2018;8:4. PMID: 29404282; https://doi.org/10.3389/fcimb.2018.00004.
Iraz M, Düzgün A, Sandallı C, et al. Distribution of β-lactamase genes among carbapenem-resistant Klebsiella pneumoniae strains isolated from patients in Turkey. Ann Lab Med. 2015;35(6):595-601. PMID: 26354347; https://doi.org/10.3343/alm.2015.35.6.595.
Nordmann P, Naas T, Poirel L. Global spread of carbapenemaseproducing Enterobacteriaceae. Emerg Infect Dis. 2011;17(10):1791-8. PMID: 22000347; https://doi.org/10.3201/eid1710.110655.
Copur B, Dosler S, Aktas Z, et al. In vitro activities of antibiotic combinations against mature biofilms of ventilator-associated pneumonia isolates. Future Microbiol. 2022;7:1027-42. PMID: 35796076; https://doi.org/10.2217/fmb-2021-0305.
Diago-Navarro E, Chen L, Passet V, et al. Carbapenem-resistant Klebsiella pneumoniae exhibit variability in capsular polysaccharide and capsule associated virulence traits. J Infect Dis. 2014;210(5):803-10. PMID: 24634498; https://doi.org/10.1093/infdis/jiu157.
Singla S, Harjai K, Chhibber S. Susceptibility of different phases of biofilm of Klebsiella pneumoniae to three different antibiotics. J Antibiot. 2013;66(2):61-6. PMID: 23168403; https://doi.org/10.1038/ja.2012.101.
Gilbert P, Evans DJ, Evans E, Duguid IG, Brown MR. Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis. J Appl Bacteriol. 1991;71(1):72-7. PMID: 1680117.
Lunden JM, Miettinen MK, Autio TJ, Korkeala HJ. Persistent Listeria monocytogenes strains show enhanced adherence to food contact surface after short contact times. J Food Prot. 2000;63(9):1204-7. PMID: 10983793; https://doi.org/10.4315/0362-028x-63.9.1204.
Vatanyoopaisarn S, Nazli A, Dodd CE, Rees CE, Waites WM. Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel. Appl Environ Microbiol. 2000;66(2):860-3. PMID: 10653766; https:// doi.org/10.1128/aem.66.2.860-863.2000.
Williams DL, Woodbury KL, Haymond BS, Parker AE, Bloebaum RD. A modified CDC biofilm reactor to produce mature biofilms on the surface of PEEK membranes for an in vivo animal model application. Curr Microbiol. 2011;62(6):1657-63. PMID: 21437591; https://doi.org/10.1007/ s00284-011-9908-2.
Corcoran M, Morris D, De Lappe N, et al. Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Appl Environ Microbiol. 2014;80(4):1507-14. PMID: 24362427; https://doi.org/10.1128/aem.03109-13.
Olofsson AC, Hermansson M, Elwing H. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Appl Environ Microbiol. 2003;69(8):4814-22. PMID: 12902275; https://doi.org/10.1128/ aem.69.8.4814-4822.2003.
Schwandt LQ, Van Weissenbruch R, Stokroos I, et al. Prevention of biofilm formation by dairy products and N-acetylcysteine on voice prostheses in an artificial throat. Acta Otolaryngol. 2004;124(6):726-31. PMID: 15515498; https://doi.org/10.1080/00016480410022516.
Marchese A, Bozzolasco M, Gualco L, et al. Effect of fosfomycin alone and in combination with N-acetylcysteine on E. coli biofilms. Intern J Antimicrob Agent. 2003;22:95-100. PMID: 14527779; https://doi. org/10.1016/s0924-8579(03)00232-2.
Coiffier G, Albert JD, Arvieux C, Guggenbuhl P. Optimizing combination rifampin therapy for staphylococcal osteoarticular infections. Joint Bone Spine. 2013;80(1):11-7. PMID: 23332140; https://doi.org/10.1016/j. jbspin.2012.09.008.
Perlroth J, Kuo MJ, Tan J, Bayer AS, Miller LG. Adjunctive use of rifampin for the treatment of Staphylococcus aureus infections: a systematic review of the literature. Arc Intern Med. 2008;168(8):805-19. PMID: 18443255; https://doi.org/10.1001/archinte.168.8.805.
Rose WE, Poppens PT. Impact of biofilm on the invitro activity of vancomycin alone and in combination with tigecycline and rifampicin against Staphylococcus aureus. J Antimicrob Chemother. 2009;63(3):485-8. PMID: 19109338; https://doi.org/10.1093/jac/dkn513.
Reiter KC, Sambrano GE, Villa B,et al. Rifampicin fails to eradicate mature biofilm formed by methicillin-resistant Staphylococcus aureus. Rev Soc Bras Med Trop. 2012;45(4):471-4. PMID: 22930045; https://doi. org/10.1590/s0037-86822012000400011.
Guo, Z, Wang, Q. Efficacy of ozonated water against Erwinia carotovora subsp. carotovora in Brassica campestris ssp. chinensis. Ozone. 2017;39(2):127-36. https://doi.org/10.1080/01919512.2016 .1270744.
Baysan A, Whiley RA, Lynch E. Antimicrobial effect of a novel ozonegenerating device on microorganisms associated with primary root carious resins in vitro. Caries Res. 2000;34(6):498-501. PMID: 11093025; https://doi.org/10.1159/000016630.
Jullien C, Bénézech T, Carpentier B, Lebret V, Faille C. Identification of surface characteristics relevant to the hygienic status of stainless steel for the food industry. J Food Eng. 2003;56(1):77-87. https://doi. org/10.1016/S0260-8774(02)00150-4.
Norwood DE, Gilmour A. Adherence of Listeria monocytogenes strains to stainless steel coupons. J Appl Microbiol. 1999;86(4):576-82. PMID: 10212403; https://doi.org/10.1046/j.1365-2672.1999.00694.x.
Giltner CL, van Schaik EJ, Audette GF, et al. The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces. Mol Microbiol. 2006;59(4):1083-96. PMID: 16430686; https://doi.org/10.1111/j.1365-2958.2005.05002.x.
Gürsoy NC. Negatif İyon ve Ozon Uygulamasının Çeşitli Bakteriler Üzerine Etkilerinin İncelenmesi, Soğutma Kulesi ve Hastane Atık Sularının Dezenfeksiyonunda Kullanımının Değerlendirilmesi [tese]. Malatya: İnönü Üniversitesi, 2009.
Korkut Y, Ayada C, Toru Ü. Ozone Therapy and Its Effect on CervicalLumbar Disc Herniation. Ankara Med J. 2015;15(3):161-8. Available from: https://dergipark.org.tr/en/pub/amj/issue/1752/21577. Accessed in 2023 (Apr. 12).
Bialoszewski D, Pietruczuk-Padzik A, Kalicinska A, et al. Activity of ozonated water and ozone against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Med Sci Mon. 2011;17(11):BR339-44. PMID: 22037737; https://doi.org/10.12659/msm.882044.
Ramzy MI, Gomaa HE, Mostafa MI, Zaki BM. Management of aggressive periodontitis using ozonized water. Egypt Med J N R C. 2005;6(1):229-45.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 São Paulo Medical Journal

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.