Molecular aspects of COVID-19 and its relationship with obesity and physical activity

a narrative review

Autores

Palavras-chave:

Obesity, COVID-19, Inflammation, Metabolism, SARS-CoV-2

Resumo

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 has several mechanisms of action related to inflammatory responses, especially in individuals diagnosed with obesity. This hyperinflammatory clinical profile resulting from the association between obesity and coronavirus disease 2019 (COVID-19) may be attenuated by regular physical activity. OBJECTIVE: The aim of this study was to review the evidence on the consequences of physical inactivity and physical activity on COVID-19 in patients with obesity. DESIGN AND SETTING: Narrative review at the Bahiana School of Medicine and Public Health in Salvador, Brazil. METHODS: We searched evidence on the association of COVID-19 with physical activity and obesity using the following keywords: “covid-19,” “physical activity,” and “obesity”. The databases used were MEDLINE (PubMed), ScienceDirect, and Virtual Health Library. Studies published from 2019 to 2021 and available in Portuguese, English, and Spanish were included. The final search was conducted on September 26, 2021. RESULTS: We identified 661 studies in the database, among which 71 were considered for inclusion in the narrative review of the molecular aspects of COVID-19 and its relationship with physical activity and obesity. CONCLUSION: This literature review enabled the perception of the relationship between the molecular mechanisms of COVID-19 and obesity. Regular physical activity had various benefits for the inflammatory condition of the studied population, highlighting moderate-intensity.

Downloads

Não há dados estatísticos.

Biografia do Autor

Ramon de Souza Lino, Escola Bahiana de Medicina e Saúde Pública

BSc. Physical Education Professional, Research Group on Metabolic Diseases, Physical Exercise and Health Technologies, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador (BA), Brazil.

Mariana Sousa de Pina Silva, Escola Bahiana de Medicina e Saúde Pública

Undergraduate Student, Research Group on Metabolic Diseases, Physical Exercise, and Health Technologies, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador (BA), Brazil.

Daniel Simões de Jesus, Escola Bahiana de Medicina e Saúde Pública

PhD. Assistant Professor, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.

Rodrigo Colares de Macedo, Escola Bahiana de Medicina e Saúde Pública

Undergraduate Student, Research Group on Metabolic Diseases, Physical Exercise and Health Technologies, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador (BA), Brazil.

Laura Souza Lagares, Escola Bahiana de Medicina e Saúde Pública

BSc. Physical Education Professional, Research Group on Metabolic Diseases, Physical Exercise and Health Technologies, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador (BA), Brazil.

Felipe Nunes Almeida dos Santos, Escola Bahiana de Medicina e Saúde Pública

BSc. Physical Education Professional, Research Group on Metabolic Diseases, Physical Exercise and Health Technologies, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador (BA), Brazil.

Luiz Alberto Bastos de Almeida, Escola Bahiana de Medicina e Saúde Pública

MSc. Assistant Professor, Laboratory of Physical Activity, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana (BA), Brazil.

Eric Simas Bomfim, Escola Bahiana de Medicina e Saúde Pública

BSc. Physical Education Professional, Research Group on Metabolic Diseases, Physical Exercise and Health Technologies, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador (BA), Brazil; Physical Education Professional, Department of Physical Education, Obesity Treatment and Surgery Center, Salvador (BA), Brazil.

Clarcson Plácido Conceição dos Santos, Escola Bahiana de Medicina e Saúde Pública

PhD. Assistant Professor, Research Group on Metabolic Diseases, Physical Exercise and Health Technologies, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador (BA), Brazil.

Referências

Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, et al. A comprehensive review of COVID-19 characteristics. Biol Proced Online. 2020;22:19. PMID: 32774178; https://doi.org/10.1186/s12575-020-00128-2.

Machhi J, Herskovitz J, Senan AM, et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J Neuroimmune Pharmacol. 2020;15(3):359-86. PMID: 32696264; https://doi.org/10.1007/s11481-020-09944-5.

Altuntas M, Yilmaz H, Guner AE. Evaluation of patients with COVID-19 diagnosis for chronic diseases. Virol J. 2021;18(1):57. PMID: 33731172; https://doi.org/10.1186/s12985-021-01524-0.

Ho JS, Fernando DI, Chan MY, Sia CH. Obesity in COVID-19: A Systematic Review and Meta-analysis. Ann Acad Med Singap. 2020;49(12):996-1008. PMID: 33463658; https://doi.org/10.47102/annals-acadmedsg.2020299.

Zhu Z, Hasegawa K, Ma B, et al. Association of obesity and its genetic predisposition with the risk of severe COVID-19: analysis of population-based cohort data. Metabolism. 2020;112:154345. PMID: 32835759; https://doi.org/10.1016/j.metabol.2020.154345.

McNeill JN, Lau ES, Paniagua SM, et al. The role of obesity in inflammatory markers in COVID-19 patients. Obes Res Clin Pract. 2021;15(1):96-9. PMID: 33390322; https://doi.org/10.1016/j.orcp.2020.12.004.

Jakicic JM, Powell KE, Campbell WW, et al. Physical Activity and the Prevention of Weight Gain in Adults: A Systematic Review. Med Sci Sports Exerc. 2019;51(6):1262-9. PMID: 31095083; https://doi.org/10.1249/MSS.0000000000001938.

OMS. WHO Guidelines on physical activity and sedentary behaviour. 2020. Available from: https://www.who.int/publications/i/item/9789240015128. Accessed in 2022 (Jan 14).

Salman D, Vishnubala D, Le Feuvre P, et al. Returning to physical activity after covid-19. BMJ. 2021;372:m4721. PMID: 33419740; https://doi.org/10.1136/bmj.m4721.

Hudson GM, Sprow K. Promoting physical activity during the COVID-19 pandemic: implications for obesity and chronic disease management. J Phys Act Health. 2020;17(7):685-7. PMID: 32516752; https://doi.org/10.1123/jpah.2020-0318.

Diels S, Vanden Berghe W, Van Hul W. Insights into the multifactorial causation of obesity by integrated genetic and epigenetic analysis. Obes Rev. 2020;21(7):e13019. PMID: 32170999; https://doi.org/10.1111/obr.13019.

Herrera BM, Keildson S , Lindgren CM. Genetics and epigenetics of obesity. Maturitas 2011;69(1):41-9. PMID: 21466928; https://doi.org/10.1016/j.maturitas.2011.02.018.

Rohde K, Keller M, la Cour Poulsen L, et al. Genetics and epigenetics in obesity. Metabolism 2019;92:37-50. PMID: 30399374; https://doi.org/10.1016/j.metabol.2018.10.007.

Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol 2011;29:415-45. PMID: 21219177; https://doi.org/10.1146/annurev-immunol-031210-101322.

Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13(4):851-63. PMID: 28721154; https://doi.org/10.5114/aoms.2016.58928.

Zeyda M, Stulnig TM. Obesity, inflammation, and insulin resistance--a mini-review. Gerontology. 2009;55(4):379-86. PMID: 19365105; https://doi.org/10.1159/000212758.

Zatterale F, Longo M, Naderi J, et al. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol 2020;10:1607. PMID: 32063863; https://doi.org/10.3389/fphys.2019.01607.

Collao N, Rada I, Francaux M, Deldicque L, Zbinden-Foncea H. Anti-Inflammatory Effect of Exercise Mediated by Toll-Like Receptor Regulation in Innate Immune Cells - A Review. Int Rev Immunol 2020;39(2):39-52. PMID: 31682154; https://doi.org/10.1080/08830185.2019.1682569.

Lee YH, Pratley RE. The evolving role of inflammation in obesity and the metabolic syndrome. Curr Diab Rep. 2005;5(1):70-5. PMID: 15663921; https://doi.org/10.1007/s11892-005-0071-7.

Gralinski LE, Sheahan TP, Morrison TE, et al. Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. mBio. 2018;9(5):e01753-18. PMID: 30301856; https://doi.org/10.1128/mBio.01753-18.

Anty R, Bekri S, Luciani N, et al. The inflammatory C-reactive protein is increased in both liver and adipose tissue in severely obese patients independently from metabolic syndrome, Type 2 diabetes, and NASH. Am J Gastroenterol. 2006;101(8):1824-33. PMID: 16790033; https://doi.org/10.1111/j.1572-0241.2006.00724.x.

Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obes Rev. 2013;14(3):232-44. PMID: 23171381; https://doi.org/10.1111/obr.12003.

Dai ZH, Xu XT, Ran ZH. Associations Between Obesity and the Effectiveness of Anti-Tumor Necrosis Factor-α Agents in Inflammatory Bowel Disease Patients: A Literature Review and Meta-analysis. Ann Pharmacother. 2020;54(8):729-41. PMID: 31955605; https://doi.org/10.1177/1060028019900660.

Speretta GF, Leite RD, Duarte AC. Obesidade, inflamação e exercício: foco sobre o TNF-alfa e IL-10. Rev Hosp Univ Pedro Ernesto. 2014;13(1):61-9. https://doi.org/10.12957/rhupe.2014.9807.

Winkler G, Kiss S, Keszthelyi L, et al. Expression of tumor necrosis factor (TNF)-α protein in the subcutaneous and visceral adipose tissue in correlation with adipocyte cell volume, serum TNF-α, soluble serum TNF-receptor-2 concentrations and C-peptide level. Eur J Endocrinol. 2003;149(2):129-35. PMID: 12887290; https://doi.org/10.1530/eje.0.1490129.

Dixon D, Meng H, Goldberg R, Schneiderman N, Delamater A. Stress and body mass index each contributes independently to tumor necrosis factor-α production in prepubescent Latino children. J Pediatr Nurs. 2009;24(5):378-88. PMID: 19782896; https://doi.org/10.1016/j.pedn.2008.02.034.

Zorena K, Jachimowicz-Duda O, Ślęzak D, Robakowska M, Mrugacz M. Adipokines and obesity. Potential link to metabolic disorders and chronic complications. Int J Mol Sci. 2020;21(10):3570. PMID: 32443588; https://doi.org/10.3390/ijms21103570.

Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic or immune response? Curr Opin Pharmacol. 2017;37:35-40. PMID: 28843953; https://doi.org/10.1016/j.coph.2017.08.006.

Wood IS, de Heredia FP, Wang B, Trayhurn P. Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc. 2009;68(4):370-7. PMID: 19698203; https://doi.org/10.1017/S0029665109990206.

Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev. 2013;93(1):1-21. PMID: 23303904; https://doi.org/10.1152/physrev.00017.2012.

Engin A. Adipose tissue hypoxia in obesity and its impact on preadipocytes and macrophages: hypoxia hypothesis. Adv Exp Med Biol. 2017;960:305-26. PMID: 28585205; https://doi.org/10.1007/978-3-319-48382-5_13.

Graßmann S, Wirsching J, Eichelmann F, Aleksandrova K. Association Between Peripheral Adipokines and Inflammation Markers: A Systematic Review and Meta-Analysis. Obesity (Silver Spring). 2017;25(10):1776-85. PMID: 28834421; https://doi.org/10.1002/oby.21945.

Cai Q, Chen F, Wang T, et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes Care. 2020;43(7):1392-8. PMID: 32409502; https://doi.org/10.2337/dc20-0576.

Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected - obesity, impaired metabolic health and COVID-19. Nat Rev Endocrinol. 2021;17(3):135-49. PMID: 33479538; https://doi.org/10.1038/s41574-020-00462-1.

Zhou Y, Chi J, Lv W, Wang Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19). Diabetes Metab Res Rev. 2021;37(2):e3377. PMID: 32588943; https://doi.org/10.1002/dmrr.3377.

Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic or immune response? Curr Opin Pharmacol 2017;37:35–40. PMID: 28843953; https://doi.org/10.1016/j.coph.2017.08.006.

Al Heialy S, Hachim MY, Senok A, et al. Regulation of Angiotensin-Converting Enzyme 2 in Obesity: Implications for COVID-19. Front Physiol. 2020;11:555039. PMID: 33071815; https://doi.org/10.3389/fphys.2020.555039.

Mostaghim A, Sinha P, Bielick C, et al. Clinical outcomes and inflammatory marker levels in patients with Covid-19 and obesity at an inner-city safety net hospital. PLoS One. 2020;15(12):e0243888. PMID: 33326480; https://doi.org/10.1371/journal.pone.0243888.

Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. PMID: 32192578; https://doi.org/10.1016/S0140-6736(20)30628-0.

Brandão SCS, Godoi ETAM, de Oliveira Cordeiro LH, et al. COVID-19 and obesity: the meeting of two pandemics. Arch Endocrinol Metab. 2021;65(1):3-13. PMID: 33320454; https://doi.org/10.20945/2359-3997000000318.

Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120-8. PMID: 32437596; https://doi.org/10.1056/nejmoa2015432.

Ayres JS. A metabolic handbook for the COVID-19 pandemic. Nat Metab. 2020;2(7):572-85. PMID: 32694793; https://doi.org/10.1038/s42255-020-0237-2.

Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: A review. J Infect Public Health. 2020;13(11):1619-29. PMID: 32718895; https://doi.org/10.1016/j.jiph.2020.07.001.

Kimura T, Namkoong H. Susceptibility of the obese population to COVID-19. Int J Infect Dis. 2020;101:380-1. PMID: 33045426; https://doi.org/10.1016/j.ijid.2020.10.015.

Luzi L, Radaelli MG. Influenza and obesity: its odd relationship and the lessons for COVID-19 pandemic. Acta Diabetol. 2020;57(6):759-64. PMID: 32249357; https://doi.org/10.1007/s00592-020-01522-8.

de Siqueira JV, Almeida LG, Zica BO, et al. Impact of obesity on hospitalizations and mortality, due to COVID-19: A systematic review. Obes Res Clin Pract. 2020;15(5):398-403. PMID: 32736969; https://doi.org/10.1016/j.orcp.2020.07.005.

Gayam V, Chobufo MD, Merghani MA, et al. Clinical characteristics and predictors of mortality in African-Americans with COVID-19 from an inner-city community teaching hospital in New York. J Med Virol. 2021;93(2):812-9. PMID: 32672844; https://doi.org/10.1002/jmv.26306.

Khider L, Soudet S, Laneelle D, et al.; French Society of Vascular Medicine (SFMV). Proposal of the French Society of Vascular Medicine for the prevention, diagnosis, and treatment of venous thromboembolic disease in outpatients with COVID-19. J Med Vasc. 2020;45(4):210-3. PMID: 32571561; https://doi.org/10.1016/j.jdmv.2020.04.008.

Ullah W, Saeed R, Sarwar U, Patel R, Fischman DL. COVID-19 Complicated by Acute Pulmonary Embolism and Right-Sided Heart Failure. JACC Case Rep. 2020;2(9):1379-82. PMID: 32313884; https://doi.org/10.1016/j. jaccas.2020.04.008.

Strausz S, Kiiskinen T, Broberg M, et al. FinnGen: sleep apnoea is a risk factor for severe COVID-19. BMJ Open Respir Res. 2021;8(1):6-11. PMID: 33436406; https://doi.org/10.1136/bmjresp-2020-000845.

Delgado-Roche L, Mesta F. Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection. Arch Med Res. 2020;51(5):384-7. PMID: 32402576; https://doi.org/10.1016/j.arcmed.2020.04.019.

Padhan K, Minakshi R, Towheed MAB, Jameel S. Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation. J Gen Virol. 2008;89(Pt 8):1960-9. PMID: 18632968; https://doi.org/10.1099/vir.0.83665-0.

Smith JT, Willey NJ, Hancock JT. Low dose ionizing radiation produces too few reactive oxygen species to directly affect antioxidant concentrations in cells. Biol Lett. 2012;8(4):594-7. PMID: 22496076; https://doi.org/10.1098/rsbl.2012.0150.

Chu Y, Yang J, Shi J, Zhang P, Wang X. Obesity is associated with increased severity of disease in COVID-19 pneumonia: a systematic review and meta-analysis. Eur J Med Res. 2020;25(1):64. PMID: 33267871; https://doi.org/10.1186/s40001-020-00464-9.

de Kruif MD, Voncken SFJ, Laven SAJS, Feron TMH, Kolfoort-Otte AAB. Obstructive sleep apnea and risk of COVID-19 infection, hospitalization, and respiratory failure. Sleep Breath. 2021;25(4):2103. PMID: 33453000; https://doi.org/10.1007/s11325-020-02271-2.

Miller MA, Cappuccio FP. A systematic review of COVID-19 and obstructive sleep apnoea. Sleep Med Rev. 2021;55:101382. PMID: 32980614; https://doi.org/10.1016/j.smrv.2020.101382.

da Silveira MP, da Silva Fagundes KK, Bizuti MR, et al. Physical exercise as a tool to help the immune system against COVID-19: an integrative review of the current literature. Clin Exp Med. 2021;21(1):15-28. PMID: 32728975; https://doi.org/10.1007/s10238-020-00650-3.

Fernández-Lázaro D, González-Bernal JJ, Sánchez-Serrano N, et al. Physical exercise as a multimodal tool for COVID-19: could it be used as a preventive strategy? Int J Environ Res Public Health. 2020;17(22):8496. PMID: 33212762; https://doi.org/10.3390/ijerph17228496.

Leandro CG, Ferreira E Silva WT, Lima-Silva AE, Lima-Silva AE, Lima-Silva AE. Covid-19 and Exercise-Induced Immunomodulation. Neuroimmunomodulation. 2020;27(1):75-8. PMID: 32506067; https://doi.org/10.1159/000508951.

Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012:960363. PMID: 22288008; https://doi.org/10.1155/2012/960363.

Ertel KA, Hallam JE, Hillman AR. The effects of training status and exercise intensity on exercise-induced muscle damage. J Sports Med Phys Fitness. 2020;60(3):449-55. PMID: 31958001; https://doi.org/10.23736/S0022-4707.19.10151-X.

Nigro E, Polito R, Alfieri A, et al. Molecular mechanisms involved in the positive effects of physical activity on coping with COVID-19. Eur J Appl Physiol. 2020;120(12):2569-82. PMID: 32885275; https://doi.org/10.1007/s00421-020-04484-5.

Furtado GE, Letieri RV, Caldo-Silva A, et al. Sustaining efficient immune functions with regular PE in the COVID-19 era and beyond. Eur J Clin Invest. 2021;51(5):e13485. PMID: 33393082; https://doi.org/10.1111/eci.13485.

Lisi F, Zelikin AN, Chandrawati R. Nitric Oxide to Fight Viral Infections. Adv Sci 2021;8(7):2003895. PMID: 33850691; https://doi.org/10.1002/advs.202003895.

Virdis A, Colucci R, Bernardini N, et al. Microvascular Endothelial Dysfunction in Human Obesity: Role of TNF-α. J Clin Endocrinol Metab. 2018;104(2):341-8. PMID: 30165404; https://doi.org/10.1210/jc.2018-00512.

Silveira EM, Rodrigues MF, Krause MS, et al. Acute exercise stimulates macrophage function: possible role of NF-kappaB pathways. Cell Biochem Funct. 2007;25(1):63-73. PMID: 16906627; https://doi.org/10.1002/cbf.1365.

Dyakova EY, Kapilevich LV, Shylko VG, Popov SV, Anfinogenova Y. PE associated with NO production: signaling pathways and significance in health and disease. Front Cell Dev Biol. 2015;3:19. PMID: 25883934; https://doi.org/10.3389/fcell.2015.00019.

Barroso WA. PGC-1 alfa como regulador inflamatório na esteato-hepatite não-alcoólica [thesis]. São Paulo: Universidade de São Paulo; 2016. https://doi.org/10.11606/D.5.2016.tde-06062016-125337.

Liang H, Ward WF. PGC-1α: a key regulator of energy metabolism. Adv Physiol Educ. 2006;30(4):145-51. PMID: 17108241; https://doi.org/10.1152/advan.00052.2006.

Korta P, Pocheć E, Mazur-Biały A. Irisin as a multifunctional protein: implications for health and certain diseases. Medicina (Kaunas). 2019;55(8):485. PMID: 31443222; https://doi.org/10.3390/medicina55080485.

Blizzard LeBlanc DR, Rioux BV, Pelech C, et al. Exercise-induced irisin release as a determinant of the metabolic response to exercise training in obese youth: the EXIT trial. Physiol Rep. 2017;5(23):e13539. PMID: 29208692; https://doi.org/10.14814/phy2.13539.

Downloads

Publicado

2023-01-05

Como Citar

1.
Lino R de S, Silva MS de P, Jesus DS de, Macedo RC de, Lagares LS, Santos FNA dos, Almeida LAB de, Bomfim ES, Santos CPC dos. Molecular aspects of COVID-19 and its relationship with obesity and physical activity: a narrative review. Sao Paulo Med J [Internet]. 5º de janeiro de 2023 [citado 15º de outubro de 2025];141(1):78-86. Disponível em: https://periodicosapm.emnuvens.com.br/spmj/article/view/430

Edição

Seção

Revisão Narrativa