Reallocation of time spent on sedentary behavior by time spent on physical activity reduces dynapenia in older adults
a prospective cohort study
Keywords:
Aged, Muscle strength, Epidemiology, Aging, ExerciseAbstract
BACKGROUND: Dynapenia is characterized by mobility limitations in the older population when combined with aggravating behavioral factors that can increase the risk of morbidity and mortality. OBJECTIVE: To investigate the hypothetical effects of reallocation of time spent on sedentary behavior (SB), moderate-to-vigorous physical activity (MVPA), and sleep on dynapenia in older adults. DESIGN AND SETTING: A prospective cohort study using exploratory surveys in Alcobaça City, Bahia State, Brazil. METHODS: In total, 176 older adults (≥ 60 years) of both sexes participated in this study. Dynapenia was assessed using the handgrip strength test with cutoff points of < 27 kg for men and < 16 kg for women. MVPA and SB were assessed using the International Physical Activity Questionnaire, and sleep was assessed using the Pittsburgh Sleep Quality Index. RESULTS: Effects on reallocation were found for the shortest times, such as 10 minutes (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.85–0.99); substituting MVPA with SB increased the chances of dynapenia by 58.0% (95% CI: 1.01–2.49). Analyzing the substitution of 60 minutes/day of SB with 60 minutes/day of MVPA revealed a protective effect, with a lower OR for dynapenia of 37.0% (OR 0.63; 95% CI: 0.40–0.99). The reallocation of sleep time did not significantly reduce dynapenia. CONCLUSIONS: Substituting the time spent sitting with the same amount of time spent on MVPA can reduce dynapenia, and a longer reallocation time confers greater health benefits in older adults.
Downloads
References
Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018;9(1):3-19. PMID: 29151281; https://doi.org/10.1002/jcsm.12238.
Clark BC, Manini TM. Sarcopenia =/= Dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63(8):829-34. PMID: 18772470; https://doi.org/10.1093/gerona/63.8.829.
Lerma NL, Cho CC, Swartz AM, et al. Isotemporal Substitution of Sedentary Behavior and Physical Activity on Function. Med Sci Sports Exerc. 2018;50(4):792-800. PMID: 29140899; https://doi.org/10.1249/MSS.0000000000001491.
Izquierdo M, Duque G, Morley JE. Physical activity guidelines for older people: knowledge gaps and future directions. Lancet Heal Longev. 2021;2(6):e380-3. PMID: 36098146; https://doi.org/10.1016/S2666-7568(21)00079-9.
Gomes M, Figueiredo D, Teixeira L, et al. Physical inactivity among older adults across Europe based on the SHARE database. Age Ageing. 2017;46(1):71-7. PMID: 28181637; https://doi.org/10.1093/ageing/afw165.
Peixoto SV, Mambrini JVM, Firmo JOA, et al. Physical activity practice among older adults: Results of the ELSI-Brazil. Rev Saude Publica. 2018;52Suppl 2(Suppl 2):5s. PMID: 30379280; https://doi.org/10.11606/S1518-8787.2018052000605.
WHO Guidelines on Physical Activity and Sedentary Behaviour. Geneva: World Health Organization; 2020. PMID: 33369898.
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. Erratum in: Age Ageing. 2019;48(4):601. PMID: 30312372; https://doi.org/10.1093/ageing/afy169.
Rosenberg D, Walker R, Greenwood-Hickman MA, et al. Device-assessed physical activity and sedentary behavior in a community-based cohort of older adults. BMC Public Health. 2020;20(1):1256. PMID: 32811454; https://doi.org/10.1186/s12889-020-09330-z.
Hamer M, Stamatakis E. Screen-Based Sedentary Behavior, Physical Activity, and Muscle Strength in the English Longitudinal Study of Ageing. PLoS One. 2013;8(6):e66222. PMID: 23755302; https://doi.org/10.1371/journal.pone.0066222.
Ramsey KA, Rojer AGM, D’Andrea L, et al. The association of objectively measured physical activity and sedentary behavior with skeletal muscle strength and muscle power in older adults: A systematic review and meta-analysis. Ageing Res Rev. 2021;67:101266. PMID: 33607291; https://doi.org/10.1016/j.arr.2021.101266.
Bohannon RW. Grip Strength: An Indispensable Biomarker For Older Adults. Clin Interv Aging. 2019;14:1681-91. PMID: 31631989; https://doi.org/10.2147/CIA.S194543.
Li J, Zhang Q, Wang Q, et al. The association between hand grip strenght and global PSQI score in the middleaged and elderly population. Sleep Biol Rhythms. 2021;19(2):155-62. https://doi.org/10.1007/s41105-020-00302-9.
Grgic J, Dumuid D, Bengoechea EG, et al. Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: A systematic scoping review of isotemporal substitution studies. Int J Behav Nutr Phys Act. 2018;15(1):69. PMID: 30001713; https://doi.org/10.1186/s12966-018-0691-3.
Vanderlinden J, Biddle GJH, Boen F, van Uffelen JGZ. Are reallocations between sedentary behaviour and physical activity associated with better sleep in adults aged 55+ years? An isotemporal substitution analysis. Int J Environ Res Public Health. 2020;17(24):9579. PMID: 33371373; https://doi.org/10.3390/ijerph17249579.
Mekary RA, Lucas M, Pan A, et al. Practice of Epidemiology Isotemporal Substitution Analysis for Physical Activity, Television Watching, and Risk of Depression. Am J Epidemiol. 2013;178(3):474-83. PMID: 23785112; https://doi.org/10.1093/aje/kws590.
Pinto LF, Giovanella L. The Family Health Strategy: expanding access and reducinghospitalizations due to ambulatory care sensitive conditions (ACSC). Cien Saude Colet. 2018;23(6):1903-14. PMID: 29972498; https://doi.org/10.1590/1413-81232018236.05592018.
da Silva VD, Tribess S, Meneguci J, et al. Time Spent in Sedentary Behaviour as Discriminant Criterion for Frailty in Older Adults. Int J Environ Res Public Health. 2018;15(7):1336. PMID: 29949848; https://doi.org/10.3390/ijerph15071336.
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189-98. PMID: 1202204; https://doi.org/10.1016/0022-3956(75)90026-6.
Galvão LL, Tribess S, Silva TG, et al. Prevalence and factors associated with high concentration of prostate-specific antigen: ELSIA study. Biology (Basel). 2020;9(10):329. PMID: 33050163; https://doi.org/10.3390/biology9100329.
Volpato S, Bianchi L, Cherubini A, et al. Prevalence and Clinical Correlates of Sarcopenia in Community-Dwelling Older People: Application of the EWGSOP Definition and Diagnostic Algorithm. J Gerontol A Biol Sci Med Sci. 2014;69(4):438-46. PMID: 24085400; https://doi.org/10.1093/gerona/glt149.
Dodds RM, Syddall HE, Cooper R, et al. Grip strength across the life course: Normative data from twelve British studies. PLoS One. 2014;9(12):e113637. PMID: 25474696; https://doi.org/10.1371/journal.pone.0113637.
Benedetti TB, Mazo GZ, Barros MVG. Aplicação do Questionário Internacional de Atividades Físicas para avaliação do nível de atividades físicas de mulheres idosas: validade concorrente e reprodutibilidade. Rev Bras Cienc Mov. 2004;12(1):25-34. https://doi.org/10.18511/rbcm.v12i1.538.
Benedetti TRB, Antunes PDC, Rodriguez-Añez CR, Mazo GZ, Petroski ÉL. Reprodutibilidade e validade do Questionário Internacional de Atividade Física (IPAQ) em homens idosos. Rev Bras Med Esporte. 2007;13(1):11-6. https://doi.org/10.1590/S1517-86922007000100004.
da Silva VD, Tribess S, Meneguci J, et al. Time Spent in Sedentary Behaviour as Discriminant Criterion for Frailty in Older Adults. Int J Environ Res Public Health. 2018;15(7):1336. PMID: 29949848; https://doi.org/10.3390/ijerph15071336.
Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193-213. PMID: 2748771; https://doi.org/10.1016/0165-1781(89)90047-4.
Bertolazi AN, Fagondes SC, Hoff LS, et al. Validation of the Brazilian Portuguese version of the Pittsburgh Sleep Quality Index. Sleep Med. 2011;12(1):70-5. PMID: 21145786; https://doi.org/10.1016/j.sleep.2010.04.020.
Lino VTS, Pereira SRM, Camacho LAB, Ribeiro Filho ST, Buksman S. Adaptação transcultural da Escala de Independência em Atividades da Vida Diária (Escala De Katz) [Cross-cultural adaptation of the Independence in Activities of Daily Living Index (Katz Index)]. Cad Saude Publica. 2008;24(1):103-12. PMID: 18209838; https://doi.org/10.1590/s0102-311x2008000100010.
Callaway C, Chumlea W, Bouchard C, Himes J, Lohman T, Martin A. Circumferences. In: Anthropometric standardizing reference manual. Champaign: Human Kinetics Books; 1988. p. 39-54.
Mekary RA, Willett WC, Hu FB, Ding EL. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am J Epidemiol. 2009;170(4):519-27. PMID: 19584129; https://doi.org/10.1093/aje/kwp163.
Spartano NL, Lyass A, Larson MG, et al. Objective physical activity and physical performance in middle-aged and older adults. Exp Gerontol. 2019;119:203-11. PMID: 30771463; https://doi.org/10.1016/j.exger.2019.02.003.
Cooper A, Lamb M, Sharp SJ, Simmons RK, Griffin SJ. Bidirectional association between physical activity and muscular strength in older adults: Results from the UK Biobank study. Int J Epidemiol. 2017;46(1):141-8. PMID: 27209633; https://doi.org/10.1093/ije/dyw054.
Langhammer B, Bergland A, Rydwik E. The Importance of Physical Activity Exercise among Older People. Biomed Res Int. 2018;2018:7856823. PMID: 30627571; https://doi.org/10.1155/2018/7856823.
Distefano G, Goodpaster BH. Effects of exercise and aging on skeletal muscle. Cold Spring Harb Perspect Med. 2018;8(3):a029785. PMID: 28432116; https://doi.org/10.1101/cshperspect.a029785.
Gianoudis J, Bailey CA, Daly RM. Associations between sedentary behaviour and body composition, muscle function and sarcopenia in community-dwelling older adults. Osteoporos Int. 2015;26(2):571-9. PMID: 25245026; https://doi.org/10.1007/s00198-014-2895-y.
Pana A, Sourtzi P, Kalokairinou A, et al. Association between muscle strength and sleep quality and duration among middle-aged and older adults: a systematic review. Eur Geriatr Med. 2021;12(1):27-44. PMID: 32974889; https://doi.org/10.1007/s41999-020-00399-8.
Pourmotabbed A, Ghaedi E, Babaei A, et al. Sleep duration and sarcopenia risk: a systematic review and dose-response meta-analysis. Sleep Breath. 2020;24(4):1267-78. PMID: 31832982; https://doi.org/10.1007/s11325-019-01965-6.
Sánchez-Sánchez JL, Mañas A, García-García FJ, et al. Sedentary behaviour, physical activity, and sarcopenia among older adults in the TSHA: isotemporal substitution model. J Cachexia Sarcopenia Muscle. 2019;10(1):188-98. PMID: 30920779; https://doi.org/10.1002/jcsm.12369.
Reid N, Healy GN, Gianoudis J, et al. Association of sitting time and breaks in sitting with muscle mass, strength, function, and inflammation in community-dwelling older adults. Osteoporos Int. 2018;29(6):1341-50. PMID: 29479645; https://doi.org/10.1007/s00198-018-4428-6.
Mekary RA, Ding EL. Isotemporal substitution as the gold standard model for physical activity epidemiology: Why it is the most appropriate for activity time research. Int J Environ Res Public Health. 2019;16(5):797. PMID: 30841555; https://doi.org/10.3390/ijerph16050797.