Intra and intersession repeatability and reliability of dynamic parameters in pressure platform assessments on subjects with simulated leg length discrepancy. A cross-sectional research
Keywords:
Leg length inequality, Gait, Equipment failure analysisAbstract
BACKGROUND: Leg length discrepancy (LLD) may play a key role in exercise biomechanics. Although the Podoprint platform has been used in dynamic pressure studies, there are no data regarding the reliability and repeatability of dynamic measurements under simulated LLD conditions. OBJECTIVES: To determine the intra and intersession repeatability and reliability of dynamic parameters of the Podoprint pressure platform under simulated LLD conditions. DESIGN AND SETTING: Observational cross-sectional study at a public university. METHODS: Thirty-seven healthy volunteers participated in this study. LLD was simulated using ethyl vinyl acetate plantar lifts with heights of 5 mm, 10 mm, 15 mm and 20 mm located under the right shoe of each volunteer. The procedure was performed to capture the dynamic parameters of each participant under five different simulated LLD conditions. Stance time, mean pressure and peak pressure measurements were registered in three trials for each foot and each LLD level. Data were collected during two separate testing sessions, in order to establish intrasession and intersession reliability. RESULTS: The intraclass correlation coefficients (ICCs) for intrasession reliability ranged from 0.775 to 0.983 in the first session and from 0.860 to 0.985 in the second session. The ICCs for intersession reliability ranged from 0.909 to 0.990. Bland-Altman plots showed absence of systematic measurement errors. CONCLUSIONS: The results from this study indicate that the Podoprint platform is a reliable system for assessing dynamic parameters under simulated LLD conditions. Future studies should evaluate plantar pressures under LLD conditions, in association with exercise, biomechanics and musculoskeletal disorders.
Downloads
References
Gurney B. Leg length discrepancy. Gait Posture. 2002;15(2):195-206. PMID: 11869914; https://doi.org/10.1016/s0966-6362(01)00148-5.
Khamis S, Carmeli E. Relationship and significance of gait deviations associated with limb length discrepancy: A systematic review. Gait Posture. 2017;57:115-23. PMID: 28600975; https://doi.org/10.1016/j.gaitpost.2017.05.028.
Knutson GA. Anatomic and functional leg-length inequality: a review and recommendation for clinical decision-making. Part II. The functional or unloaded leg-length asymmetry. Chiropr Osteopat. 2005;13:12. PMID: 16080787; https://doi.org/10.1186/1746-1340-13-12.
Langer S. Structural leg shortage. A case report. J Am Podiatry Assoc. 1976;66(1):38-40. PMID: 1244394; https://doi.org/10.7547/87507315-66-1-38.
McCaw ST, Bates BT. Biomechanical implications of mild leg length inequality. Br J Sports Med. 1991;25(1):10-3. PMID: 1913023; https://doi.org/10.1136/bjsm.25.1.10. Erratum in: Br J Sports Med 1991;25(4):190.
McWilliams AB, Grainger AJ, O’Connor PJ, et al. A review of symptomatic leg length inequality following total hip arthroplasty. Hip Int. 2013;23(1):6-14. PMID: 23397200; https://doi.org/10.5301/HIP.2013.10631.
Mahmood S, Huffman LK, Harris JG. Limb-length discrepancy as a cause of plantar fasciitis. J Am Podiatr Med Assoc. 2010;100(6):452-5. PMID: 21084530; https://doi.org/10.7547/1000452.
Kendall JC, Bird AR, Azari MF. Foot posture, leg length discrepancy and low back pain--their relationship and clinical management using foot orthoses--an overview. Foot (Edinb). 2014;24(2):75-80. PMID: 24703513; https://doi.org/10.1016/j.foot.2014.03.004.
Carlson M, Wilkerson J. Are differences in leg length predictive of lateral patello-femoral pain? Physiother Res Int. 2007;12(1):29-38. PMID: 17432392; https://doi.org/10.1002/pri.351.
Akşahin E, Güzel A, Erdoğan AO, et al. The patellofemoral kinematics in patients with untreated developmental dislocation of the hip suffering from patellofemoral pain. Knee Surg Sports Traumatol Arthrosc. 2012;20(11):2337-47. PMID: 22183734; https://doi.org/10.1007/s00167-011-1807-3.
Aiona M, Do KP, Emara K, Dorociak R, Pierce R. Gait patterns in children with limb length discrepancy. J Pediatr Orthop. 2015;35(3):280-4. PMID: 25075889; https://doi.org/10.1097/BPO.0000000000000262.
Li J, McWilliams AB, Jin Z, et al. Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking. Clin Biomech (Bristol, Avon). 2015;30(5):513-9. PMID: 25900447; https://doi.org/10.1016/j.clinbiomech.2015.02.014.
Resende RA, Kirkwood RN, Deluzio KJ, Morton AM, Fonseca ST. Mild leg length discrepancy affects lower limbs, pelvis and trunk biomechanics of individuals with knee osteoarthritis during gait. Clin Biomech (Bristol, Avon). 2016;38:1-7. PMID: 27509479; https://doi.org/10.1016/j.clinbiomech.2016.08.001.
Simón-Pérez E, Simón-Pérez C, Alonso-Peña D, et al. Stiffness degree of ankle range of motion in diabetic patients with atypical amputation. Rev Assoc Med Bras (1992). 2020;66(2):216-21. PMID: 32428158; https://doi.org/10.1590/1806-9282.66.2.216.
Sánchez-Gómez R, Becerro-de-Bengoa-Vallejo R, Losa-Iglesias ME, Calvo-Lobo C, Navarro-Flores E, Palomo-López P, Romero-Morales C, López-López D. Reliability Study of Diagnostic Tests for Functional Hallux Limitus. Foot Ankle Int. 2020;41(4):457-62. PMID: 31994419; https://doi.org/10.1177/1071100719901116.
Bhave A, Paley D, Herzenberg JE. Improvement in gait parameters after lengthening for the treatment of limb-length discrepancy. J Bone Joint Surg Am. 1999;81(4):529-34. PMID: 10225798; https://doi.org/10.2106/00004623-199904000-00010.
Perttunen JR, Anttila E, Södergård J, Merikanto J, Komi PV. Gait asymmetry in patients with limb length discrepancy. Scand J Med Sci Sports. 2004;14(1):49-56. PMID: 14723788; https://doi.org/10.1111/j.1600-0838.2003.00307.x.
Kaufman KR, Miller LS, Sutherland DH. Gait asymmetry in patients with limb-length inequality. J Pediatr Orthop. 1996;16(2):144-50. PMID: 8742274; https://doi.org/10.1097/00004694-199603000-00002.
Betsch M, Wild M, Große B, Rapp W, Horstmann T. The effect of simulating leg length inequality on spinal posture and pelvic position: a dynamic rasterstereographic analysis. Eur Spine J. 2012;21(4):691-7. PMID: 21769443; https://doi.org/10.1007/s00586-011-1912-5.
Betsch M, Rapp W, Przibylla A, et al. Determination of the amount of leg length inequality that alters spinal posture in healthy subjects using rasterstereography. Eur Spine J. 2013;22(6):1354-61. PMID: 23479027; https://doi.org/10.1007/s00586-013-2720-x.
Gross KD, Felson DT, Niu J, et al. Association of flat feet with knee pain and cartilage damage in older adults. Arthritis Care Res (Hoboken). 2011;63(7):937-44. PMID: 21717597; https://doi.org/10.1002/acr.20431.
Becerro de Bengoa Vallejo R, Losa Iglesias ME, Zeni J, Thomas S. Reliability and repeatability of the portable EPS-platform digital pressure-plate system. J Am Podiatr Med Assoc. 2013;103(3):197-203. PMID: 23697724; https://doi.org/10.7547/1030197.
Pérez-Soriano P, Llana-Belloch S, Martínez-Nova A, Morey-Klapsing G, Encarnación-Martínez A. Nordic walking practice might improve plantar pressure distribution. Res Q Exerc Sport. 2011;82(4):593-9. PMID: 22276400; https://doi.org/10.1080/02701367.2011.10599795.
» https://doi.org/https://doi.org/10.1080/02701367.2011.10599795
Sánchez-Sáez JM, Palomo-López P, Becerro-de-Bengoa-Vallejo R, et al. Stability of Three Different Sanitary Shoes on Healthcare Workers: A Cross-Sectional Study. Int J Environ Res Public Health. 2019;16(12):2126. PMID: 31208123; https://doi.org/10.3390/ijerph16122126.
Gurney JK, Kersting UG, Rosenbaum D. Between-day reliability of repeated plantar pressure distribution measurements in a normal population. Gait Posture. 2008;27(4):706-9. PMID: 17693087; https://doi.org/10.1016/j.gaitpost.2007.07.002.
Oviedo GR, Guerra-Balic M, Baynard T, Javierre C. Effects of aerobic, resistance and balance training in adults with intellectual disabilities. Res Dev Disabil. 2014;35(11):2624-34. PMID: 25041876; https://doi.org/10.1016/j.ridd.2014.06.025.
Azevedo R, Teixeira N, Abade E, Carvalho A. Effects of noise on postural stability when in the standing position. Work. 2016;54(1):87-91. PMID: 27061688; https://doi.org/10.3233/WOR-162280.
O’Toole GC, Makwana NK, Lunn J, Harty J, Stephens MM. The effect of leg length discrepancy on foot loading patterns and contact times. Foot Ankle Int. 2003;24(3):256-9. PMID: 12793490; https://doi.org/10.1177/107110070302400310.
White SC, Gilchrist LA, Wilk BE. Asymmetric limb loading with true or simulated leg-length differences. Clin Orthop Relat Res. 2004;(421):287-92. PMID: 15123962; https://doi.org/10.1097/01.blo.0000119460.33630.6d.
von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495-9. PMID: 25046131; https://doi.org/10.1016j.ijsu.2014.07.013.
Kuo AD, Donelan JM. Dynamic principles of gait and their clinical implications. Phys Ther. 2010;90(2):157-74. PMID: 20023002; https://doi.org/10.2522/ptj.20090125.
Neelly K, Wallmann HW, Backus CJ. Validity of measuring leg length with a tape measure compared to a computed tomography scan. Physiother Theory Pract. 2013;29(6):487-92. PMID: 23289961; https://doi.org/10.3109/09593985.2012.755589.
Marrugat, J. Calculadora de tamaño muestral GRANMO. Versión 7.12 Abril 2012 Available from: https://www.imim.cat/ofertadeserveis/software-public/granmo/ Accessed in 2021 (Mar 3).
Tudor-Locke C, Rowe DA. Using cadence to study free-living ambulatory behaviour. Sports Med. 2012;42(5):381-98. PMID: 22462794; https://doi.org/10.2165/11599170-000000000-00000.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-74. PMID: 843571.
Burdock EI, Fleiss JL, Hardesty AS. A new view of inter-observer agreement. Personnel Psychology. 1963;16:373-84. https://doi.org/10.1111/j.1744-6570.1963.tb01283.x.
Watkins MP, Portney L. Foundations of clinical research: applications to practice. 3rd ed. Pearson Prentice Hall: Nueva Jersey; 2009.
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307-10. PMID: 2868172.
Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420-8. PMID: 18839484; https://doi.org/10.1037//0033-2909.86.2.420.
General Assembly of the World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Coll Dent. 2014;81(3):14-8. PMID: 25951678.
Harvill LM. Standard Error of Measurement. An NCME Instructional Module on. Educational Measurement: Issues and Practice. 1991;10(2):33-41. https://doi.org/10.1111/j.1745-3992.1991.tb00195.x.
de Vet HCW, Terwee CB, Mokkink LB, Knol DL. Reliability. In: de Vet HCW, Terwee CB, Mokkink LB, Knol DL, editors. Measurement in Medicine. Cambridge University Press: Cambridge; 2011. p. 96-149.
Izquierdo-Renau M, Pérez-Soriano P, Ribas-García V, Queralt A. Intra and intersession repeatability and reliability of the S-Plate® pressure platform. Gait Posture. 2017;52:224-6. MID: 27936441; https://doi.org/10.1016/j.gaitpost.2016.12.001.
van der Leeden M, Dekker JH, Siemonsma PC, Lek-Westerhof SS, Steultjens MP. Reproducibility of plantar pressure measurements in patients with chronic arthritis: a comparison of one-step, two-step, and three-step protocols and an estimate of the number of measurements required. Foot Ankle Int. 2004;25(10):739-44. PMID: 15566706; https://doi.org/10.1177/107110070402501008.
Ramanathan AK, Kiran P, Arnold GP, Wang W, Abboud RJ. Repeatability of the Pedar-X in-shoe pressure measuring system. Foot Ankle Surg. 2010;16(2):70-3. PMID: 20483137; https://doi.org/10.1016/j.fas.2009.05.006.