Immunoexpression of TS, p53, COX2, EGFR, MSH6 and MLH1 biomarkers and its correlation with degree of differentiation, tumor staging and prognostic factors in colorectal adenocarcinoma
a retrospective longitudinal study
Keywords:
Colorectal neoplasms, Biomarkers, Neoplasms, ForecastingAbstract
BACKGROUND: There are cases of colorectal tumors that, although small, show more aggressive evo-lution than large tumors. This motivated us to study whether there are any proteins capable of alerting about these changes. The aim here was to correlate the immunoexpression of the TS, p53, COX2, EGFR, MSH6 and MLH1 biomarkers in tumors in patients with colorectal adenocarcinoma, with the degree of cell differentiation, tumor staging and clinical-pathological prognostic factors. DESIGN AND SETTING: Retrospective observational study at a public tertiary-level hospital. METHODS: We analyzed tissue-microarray paraffin blocks of tumor tissues that had been resected from 107 patients. We used Fisher’s exact test to study associations between tumor differentiation/staging and the immunoexpression of biomarkers. We also used Kaplan-Meier estimation, the log-rank test and the adjusted Cox regression model to investigate the patients’ overall survival (in months) according to bio-markers and disease-free interval. RESULTS: The degree of tumor differentiation and tumor staging were not associated with the biomark-ers, except in cases of patients in stages III or IV, in which there was a correlation with MLH1 expression (P = 0.021). Patient survival and disease-free interval were not associated with the biomarkers. CONCLUSION: There were no associations between the degree of tumor differentiation, staging, length of survival or disease-free interval and the immunoexpression of the TS, p53, COX2, EGFR or MSH6 tumor markers. In advanced cases of colorectal adenocarcinoma (stages III and IV), there was a higher percentage of MLH1-negative results.
Downloads
References
Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56(2):106-30. PMID: 16514137; doi: 10.3322/canjclin.56.2.106.
Instituto Nacional de Câncer José Alencar Gomes da Silva. Coordenação de Prevenção e Vigilância. Estimativa 2016. Incidência de cancer no Brasil. Rio de Janeiro: Instituto Nacional de Câncer José Alencar Gomes da Silva; 2015. Available from: http://santacasadermatoazulay.com.br/wp-content/uploads/2017/06/estimativa-2016-v11.pdf . Accessed in 2018 (Jun 28).
Fisher JA, Fikry C, Troxel AB. Cutting cost and increasing access to colorectal cancer screening: another approach to following the guidelines. Cancer Epidemiol Biomarkers Prev. 2006;15(1):108-13. PMID: 16434595; doi: 10.1158/1055-9965.EPI-05-0198.
Shepherd NA, Saraga EP, Love SB, Jass JR. Prognostic factors in colonic cancer. Histopathology. 1989;14(6):613-20. PMID: 2759558; doi: 10.1111/j.1365-2559.1989.tb02202.x.
Duffy MJ, van Dalen A, Haglund C, et al. Tumour markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines for clinical use. Eur J Cancer. 2007;43(9):1348-60. PMID: 17512720; doi: 10.1016/j.ejca.2007.03.021.
Stein U, Schlag PM. Clinical, biological, and molecular aspects of metastasis in colorectal cancer. Recent Results Cancer Res. 2007;176:61‑80. PMID: 17607917; doi: 10.1007/978-3-540-46091-6_7.
Ahn MJ, Choi JH, Oh HS, et al. Thymidylate synthase, thymidine phosphorylase, VEGF and p53 protein expression in primary colorectal cancer for predicting response to 5-fluorouracil-based chemotherapy. Cancer Res Treat. 2005;37(4):216-22. PMID: 19956517; doi: 10.4143/ crt.2005.37.4.216.
Cavalcanti Júnior GB, Klumb CE, Maia RC. p53 e as hemopatias malignas [p53 and hematological malignancies]. Revista Brasileira de Cancerologia. 2002;48(3):419-27. Available from: http://www.inca.gov.br/rbc/n_48/v03/pdf/revisao3.pdf. Accessed in 2018 (Jun 28).
Arruda JT, Bordin BM, Miranda LCB, Maia DLM, Moura KKVO. Proteína p53 e o câncer: controvérsia e esperança. Estudos, Goiânia. 2008;35(1/2):123‑41. Available from: http://revistas.pucgoias.edu.br/index.php/estudos/article/viewFile/564/449. Accessed in 2018 (Jun 28).
Sato Y, Nascimento CF, Ferreira SS, Fregnani JHTG, Soares FA. Análise da expressão imuno-histoquímica de c-erbB-2 e EGFR em carcinoma epidermóide de esôfago [Immunohistochemical expression of c-erbB-2 and EGFR in esophageal squamous cell carcinoma]. J Bras Patol Med Lab. 2007;43(4):275-83. doi: 10.1590/S1676-24442007000400010.
Sousa BD, Azevedo MA, Mader AMAA, Martins LC, Waisberg J. Imunoexpressão do receptor do fator de crescimento epidérmico (EGFR) nos tecidos neoplásicos e adjacentes do carcinoma colorretal esporádico [Immunoexpression of the receptor epidermal growth factor receptor (EGFR) in tumor tissues and adjacents from sporadic colorectal carcinoma]. Arquivos Brasileiros de Ciências da Saúde. 2012;37(1):8-13. doi: 10.7322/abcs.v37i1.42.
Castells A, Payá A, Alenda C, et al. Cyclooxygenase2 expression in colorectal cancer with DNA mismatch repair deficiency. Clin Cancer Res. 2006;12(6):1686-92. PMID: 16551850; doi: 10.1158/1078-0432.CCR-05-1581.
Fux R, Schwab M, Thon KP, Gleiter CH, Fritz P. Cyclooxygenase-2 expression in human colorectal cancer is unrelated to overall patient survival. Clin Cancer Res. 2005;11(13):4754-60. PMID: 16000571; doi: 10.1158/1078-0432.CCR-04-2586.
Oliva MR, Ripoll F, Muñiz P, et al. Genetic alterations and oxidative metabolism in sporadic colorectal tumors from a Spanish community. Mol Carcinog. 1997;18(4):232-43. PMID: 9142218; doi: 10.1002/(SICI)1098-2744(199704)18:4<232::AID-MC7>3.0.CO;2-F.
Herman JG, Umar A, Polyak K, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A. 1998:95(12):6870-5. PMID: 9618505; doi: 10.1073/pnas.95.12.6870.
Wheeler JM, Beck Ne, Kim HC, et al. Mechanisms of inactivation of mismatch repair genes in human colorectal cancer cell lines: The predominant role of hMLH1. Proc Natl Acad Sci U S A. 1999;96(18):10296‑301. PMID: 10468602.
Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993;90(17):7915-22. PMID: 8367443; doi: 10.1073/pnas.90.17.7915.
Pool-Zobel BL, Leucht U. Induction of DNA by risk factors of colon cancer in human colon cells derived from biopsies. Mutat Res. 1997;375(2):105-15. PMID: 9202721; doi: 10.1016/S0027-5107(97)00006-7.
Sidelnikov E, Bostick RM, Flanders WD, et al. MutL-homolog 1 expression and risk of incident, sporadic colorectal adenoma: search for prospective biomarkers of risk for colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2009;18(5):1599-609. PMID: 19423536; doi: 10.1158/1055-9965. EPI-08-0800.
Bussab WO, Morettin PA. Estatística Básica. 5a. ed. São Paulo: Saraiva; 2006. ISBN: 9788502034976.
Agresti A. Categorical data analysis. New York: Wiley Interscience; 1990. ISBN: 0‐471‐85301‐1.
Collett D. Modelling Survival Data in Medical Research. 2nd ed. Boca Raton, Florida: Chapman & Hall/CRC; 2003. ISBN-13: 978-1584883258; ISBN-10: 1584883251.
Theodoropoulos GE, Karafoka E, Papailiou JG, et al. P53 and EGFR in colorectal cancer: a reappraisal of ‘old’ tissue markers in patients with long follow-up. Anticancer Res. 2009;29(2):785-91. PMID: 19331236.
Han HJ, Maruyama M, Baba S, Park JG, Nakamura Y. Genomic structure of human mismatch repair gene, hMLH1, and its mutation analysis in patients with hereditary non-polyposis colorectal cancer (HNPCC). Hum Mol Genet. 1995;4(2):237-42. PMID: 7757073.
Pinho MSL, Rossi BM. As proteínas envolvidas na carcinogênese
colorretal (IV). Rev Bras Coloproct. 1998;18(4):278-82. Available from: https://www.sbcp.org.br/pdfs/18_4/14.pdf. Accessed in 2018 (Jun 28).
Martinez CAR, Cordeiro AT, Priolli DG, et al. Avaliação da expressão tecidual do gene de reparo MLH1 e dos níveis de dano oxidativo ao DNA em doentes com câncer colorretal [Evaluation of expression of mismatch repair gene MLH1 and levels of oxidative DNA damage in normal and neoplastic tissues of patients with colorectal cancer]. Rev Bras Colo-proctol. 2009;29(3):303-13. doi: 10.1590/S0101-98802009000300004.