Oxidative stress in maternal milk and cord blood in gestational diabetes mellitus
a prospective study
Keywords:
Diabetes mellitus, gestational, Stress, oxidative, AntioxidantsAbstract
BACKGROUND: Reduced antioxidant defenses may reflect a poor protective response against oxidative stress and this may be implicated in progression of gestational diabetes mellitus (GDM). Oxidative stressi nduced by hyperglycemia plays a major role in micro and macrovascular complica tions, which imply endothelial dysfunction. OBJECTIVE: Our aim in this study was to investigate the association between GDM and oxidative stress markers measured in plasma, with regard to revealing changes to total antioxidant capacity (TAC) and total oxidant status (TOS) among mothers showing impairments in oral glucose tolerance tests (OGTTs). DESIGN AND SETTING: Prospective study at a university hospital in Turkey. METHODS: The study group consisted of 50 mothers with GDM, and 59 healthy mothers served as controls. Umbilical cord blood samples were taken from all mothers during delivery and breast milk samples on the fifth day after delivery. TAC, TOS, thiol and disulfide levels were measured. RESULTS: No statistically significant relationship between the blood and milk samples could be found. An analysis on correlations between TAC, TOS and certain parameters revealed that there were negative correlations between TOS and total thiol (r = -0.386; P < 0.001) and between TOS and disulfide (r = -0.388; P < 0.001) in milk in the control group. However, these findings were not observed in the study group. CONCLUSION: Our findings suggested that a compensatory mechanism of oxidative stress was expected to be present in gestational diabetes mellitus and that this might be ameliorated through good glycemic regulation and antioxidant supplementation.
Downloads
References
Dundaroz R, Erenberk U, Turel O, et al. Oxidative and antioxidative status of children with acute bronchiolitis. J Pediatr (Rio J). 2013;89(4):407-11. PMID: 23796358; https://doi.org/10.1016/j.jped.2012.12.001.
Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82(2):291-5. PMID: 9129943; https://doi.org/10.1113/expphysiol.1997.sp004024.
Betteridge DJ. What is oxidative stress? Metabolism. 2000;49(2 Suppl 1):3-8. PMID: 10693912; https://doi.org/10.1016/s0026-0495(00)80077-3.
López-Tinoco C, Roca M, García-Valero A, et al. Oxidative stress and antioxidant status in patients with late-onset gestational diabetes mellitus. Acta Diabetol. 2013;50(2):201-8. PMID: 21327985; https://doi.org/10.1007/s00592-011-0264-2.
Lappas M, Hiden U, Desoye Get al. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal. 2011;15(12):3061-100. PMID: 21675877. PMID: 21675877; https://doi.org/10.1089/ars.2010.3765.
Biri A, Onan A, Devrim E, et al. Oxidant status in maternal and cord plasma and placental tissue in gestational diabetes. Placenta. 2006;27(2-3):327-32. PMID: 16338477; https://doi.org/10.1016/j.placenta.2005.01.002.
Eriksson UJ, Simán CM. Pregnant diabetic rats fed the antioxidant butylated hydroxytoluene show decreased occurrence of malformations in offspring. Diabetes. 1996;45(11):1497-502. PMID: 8866552; https://doi.org/10.2337/diab.45.11.1497.
Sarikabadayi YU, Aydemir O, Aydemir C, et al. Umbilical cord oxidative stress in infants of diabetic mothers and its relation to maternal hyperglycemia. J Pediatr Endocrinol Metab. 2011;24(9-10):671-4. PMID: 22145454; https://doi.org/10.1515/jpem.2011.315.
Peuchant E, Brun JL, Rigalleau V, et al. Oxidative and antioxidative status in pregnant women with either gestational or type 1 diabetes. Clin Biochem. 2004;37(4):293-8. PMID: 15003731; https://doi.org/10.1016/j.clinbiochem.2003.12.005.
Karacay O, Sepici-Dincel A, Karcaaltincaba D, et al. A quantitative evaluation of total antioxidant status and oxidative stress markers in preeclampsia and gestational diabetic patients in 24-36 weeks of gestation. Diabetes Res Clin Pract. 201089(3):231-8. PMID: 20537747; https://doi.org/10.1016/j.diabres.2010.04.015.
Roca-Rodríguez MM, López-Tinoco C, Murri M, et al. Postpartum development of endothelial dysfunction and oxidative stress markers in women with previous gestational diabetes mellitus. J Endocrinol Invest. 2014;37(6):503-9. PMID: 24458829; https://doi.org/10.1007/s40618-013-0045-6.
Orhan H, Onderoglu L, Yücel A, Sahin G. Circulating biomarkers of oxidative stress in complicated pregnancies. Arch Gynecol Obstet. 2003;267(4):189-95. PMID: 12592416; https://doi.org/10.1007/s00404-002-0319-2.
Toescu V, Nuttall SL, Martin U, et al. Changes in plasma lipids and markers of oxidative stress in normal pregnancy and pregnancies complicated by diabetes. Clin Sci (Lond). 2004;106(1):93-8. PMID: 12875648; https://doi.org/10.1042/CS20030175.
Kosecik M, Erel O, Sevinc E, Selek S. Increased oxidative stress in children exposed to passive smoking. Int J Cardiol. 2005;100(1):61-4. PMID: 15820286; https://doi.org/10.1016/j.ijcard.2004.05.069.
Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103-11. PMID: 16214125; https://doi.org/10.1016/j.clinbiochem.2005.08.008.
Loven D, Schedl H, Wilson H, et al. Effect of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptozocin-induced diabetes. Diabetes. 1986;35(5):503-7. PMID: 3514329; https://doi.org/10.2337/diab.35.5.503.
Wohaieb SA, Godin DV. Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat. Effects of insulin treatment. Diabetes. 1987;36(9):1014-8. PMID: 3301471; https://doi.org/10.2337/diab.36.9.1014.
Atalay M, Laaksonen DE. Diabetes, oxidative stress and physical exercise. J Sports Sci Med. 2002;1(1):1-14. PMID: 24672266.
Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37(4):277-85. PMID: 15003729; https://doi.org/10.1016/j.clinbiochem.2003.11.015.
Sánchez-Rodríguez MA, Mendoza-Núñez VM. Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. Oxid Med Cell Longev. 2019;2019:4128152. PMID: 31885788; https://doi.org/10.1155/2019/4128152.
Liu T, Castro S, Brasier AR, et al. Reactive oxygen species mediate virus-induced STAT activation: role of tyrosine phosphatases. J Biol Chem. 2004;279(4):2461-9. PMID: 14578356; https://doi.org/10.1074/jbc.M307251200.
Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004;24(5):816-23. PMID: 14976002; https://doi.org/10.1161/01.ATV.0000122852.22604.78.
Kaneto H, Nakatani Y, Kawamori D, et al. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance. Int J Biochem Cell Biol. 2005;37(8):1595-608. PMID: 15878838; https://doi.org/10.1016/j.biocel.2005.04.003.
Topcuoglu S, Karatekin G, Yavuz T, et al. The relationship between the oxidative stress and the cardiac hypertrophy in infants of diabetic mothers. Diabetes Res Clin Pract. 2015;109(1):104-9. PMID: 25934526; https://doi.org/10.1016/j.diabres.2015.04.022.
Ozler S, Oztas E, Uygur D, et al. The Value of Total antioxidant Status and Serum Tumor Necrosis Factor-α Levels at 24-28 Weeks of Gestation in the Prediction of Optimal Treatment Protocol in Gestational Diabetes Mellitus. Exp Clin Endocrinol Diabetes. 2019;127(7):485-491. PMID: 26011173; https://doi.org/10.1055/s-0035-1554623.
Coughlan MT, Vervaart PP, Permezel M, Georgiou HM, Rice GE. Altered placental oxidative stress status in gestational diabetes mellitus. Placenta. 2004;25(1):78-84. PMID: 15013642; https://doi.org/10.1016/S0143-4004(03)00183-8.
Shen Y, Wan H, Zhu J, et al. Fish Oil and Olive Oil Supplementation in Late Pregnancy and Lactation Differentially Affect Oxidative Stress and Inflammation in Sows and Piglets. Lipids. 2015;50(7):647-58. PMID: 25968335; https://doi.org/10.1007/s11745-015-4024-x.
Ogundele MO. Effects of storage on the physicochemical and antibacterial properties of human milk. Br J Biomed Sci. 2002;59(4):205-11. PMID: 12572954; https://doi.org/10.1080/09674845.2002.11783661.
Silvestre D, Miranda M, Muriach M, et al. Antioxidant capacity of human milk: effect of thermal conditions for the pasteurization. Acta Paediatr. 2008;97(8):1070-4. PMID: 18477059; https://doi.org/10.1111/j.1651-2227.2008.00870.x.
Al Ghafli MH, Padmanabhan R, Kataya HH, Berg B. Effects of alpha-lipoic acid supplementation on maternal diabetes-induced growth retardation and congenital anomalies in rat fetuses. Mol Cell Biochem. 2004;261(1-2):123-35. PMID: 15362495; https://doi.org/10.1023/b:mcbi.0000028747.92084.42.
Jamilian M, Samimi M, Kolahdooz F, et al. Omega-3 fatty acid supplementation affects pregnancy outcomes in gestational diabetes: a randomized, double-blind, placebo-controlled trial. J Matern Fetal Neonatal Med. 2016;29(4):669-75. PMID: 25747955; https://doi.org/10.3109/14767058.2015.1015980.
Chaudhari L, Tandon OP, Vaney N, Agarwal N. Lipid peroxidation and antioxidant enzymes in gestational diabetics. Indian J Physiol Pharmacol. 2003;47(4):441-6. PMID: 15266957.
Kemse NG, Kale AA, Joshi SR. A combined supplementation of omega-3 fatty acids and micronutrients (folic acid, vitamin B12) reduces oxidative stress markers in a rat model of pregnancy induced hypertension. PLoS One. 2014;9(11):e111902. PMID: 25405347; https://doi.org/10.1371/journal.pone.0111902.
Gurkan F, Atamer Y, Ece A, et al. Relationship among serum selenium levels, lipid peroxidation, and acute bronchiolitis in infancy. Biol race Elem Res. 2004;100(2):97-104. PMID: 15326359; https://doi.org/10.1385/BTER:100:2:097.
Tan RR, Zhang SJ, Tsoi B, et al. A natural product, resveratrol, protects against high-glucose-induced developmental damage in chicken embryo. J Asian Nat Prod Res. 2015;17(5):586-94. PMID: 26053125; https://doi.org/10.1080/10286020.2015.1043901.
Santos-Sánchez NF, Salas-Coronado R, Valadez-Blanco R, Hernández-Carlos B, Guadarrama-Mendoza PC. Natural antioxidant extracts as food preservatives. Acta Sci Pol Technol Aliment. 2017;16(4):361-70. PMID: 29241315; https://doi.org/10.17306/J.AFS.0530.