Performance and reference intervals of thrombin generation test
results from the Brazilian longitudinal study of adult health (ELSA-Brasil). A cross-sectional study
Keywords:
Clinical laboratory techniques, Thrombin, Reference valuesAbstract
BACKGROUND: The thrombin generation test (TGT) has shown promise for investigation of hemorrhagic and thrombotic diseases. However, despite its potential, it still needs standardization. Moreover, few studies have established reference values for TGT parameters. In Brazil, these values have not yet been established. OBJECTIVE: To determine TGT performance and reference intervals for TGT parameters in healthy individuals. DESIGN AND SETTING: Cross-sectional study conducted among participants in the Brazilian Longitudinal Study of Adult Health (Estudo Longitudinal de Saúde do Adulto, ELSA-Brasil). METHODS: The reference sample consisted of 620 healthy individuals. The calibrated automated thrombogram (CAT) method, under low and high tissue factor (TF) conditions, was used to assess thrombin generation. Test performance was analyzed using intra and interassay coefficients of variation (CV) and reference intervals were calculated using the nonparametric method proposed by the international Federation of Clinical Chemistry and the Clinical and Laboratory Standards Institute. RESULTS: The intraassay CV ranged from 1.4% to 2.2% and the interassay CV, 6.8% to 14.7%. The reference intervals for TGT parameters under low and high TF conditions were, respectively: lagtime: 3.0-10.3 and 1.4-3.7 min; endogenous thrombin potential (ETP): 1134.6-2517.9 and 1413.6-2658.0 nM.min; normalized ETP: 0.6-1.3 and 0.7-1.4; peak: 103.2-397.7 and 256.4-479.0 nM; normalized peak: 0.3-1.3 and 0.7-1.2; and time-to-peak: 5.6-16.0 and 3.4-6.7 min. These parameters were categorized relative to sex. CONCLUSION: TGT performance was adequate and the proposed reference intervals were similar to those of other studies. Our findings may be useful for consolidating the TGT, through contributing to its standardization and validation.
Downloads
References
Baglin T. The measurement and application of thrombin generation. Br J Haematol. 2005;130(5):653-61. PMID: 16115120; https://doi.org/10.1111/j.1365-2141.2005.05612.x.
Hemker HC, Giesen P, Al Dieri R, et al. Calibrated automated thrombin generation measurement in clotting plasma. Pathophysiol Haemost Thromb. 2003;33(1):4-15. PMID: 12853707; https://doi.org/10.1159/000071636.
Tripodi A. Thrombin generation assay and its application in the clinical laboratory. Clin Chem. 2016;62(5):699-707. PMID: 26955824; https://doi.org/10.1373/clinchem.2015.248625.
Bloemen S, Kelchtermans H, Hemker HC. Thrombin generation in low plasma volumes. Thromb J. 2018;16:10. PMID: 29785176; https://doi.org/10.1186/s12959-018-0164-6.
Castoldi E, Rosing J. Thrombin generation tests. Thromb Res. 2011;127 Suppl. 3:S21-5. PMID: 21262433; https://doi.org/10.1016/S0049-3848(11)70007-X.
Lecut C, Peters P, Massion PB, Gothot A. Quelle place pour le test de génération de thrombine au sein du laboratoire de biologie clinique? [Is there a place for thrombin generation assay in routine clinical laboratory?]. Ann Biol Clin (Paris). 2015;73(2):137-49. PMID: 25847735; https://doi.org/10.1684/abc.2014.1018.
Berntorp E, Salvagno GL. Standardization and clinical utility of thrombin-generation assays. Semin Thromb Hemost. 2008;34(7):670-82. PMID: 19085768; https://doi.org/10.1055/s-0028-1104546.
Wan J, Konings J, Yan Q, et al. A novel assay for studying the involvement of blood cells in whole blood thrombin generation. J Thromb Haemost. 2020;18(6):1291-301. PMID: 32108990; https://doi.org/10.1111/jth.14786.
Santagostino E, Mancuso ME, Tripodi A, et al. Severe hemophilia with mild bleeding phenotype: Molecular characterization and global coagulation profile. J Thromb Haemost. 2010;8(4):737-43. PMID: 20102490; https://doi.org/10.1111/j.1538-7836.2010.03767.x.
Bowyer AE, Van Veen JJ, Goodeve AC, Kitchen S, Makris M. Specific and global coagulation assays in the diagnosis of discrepant mild hemophilia A. Haematologica. 2013;98(12):1980-7. PMID: 23812942; https://doi.org/10.3324/haematol.2013.088088.
Schmidt DE, Chaireti R, Bruzelius M, et al. Correlation of thromboelastography and thrombin generation assays in warfarin-treated patients. Thromb Res. 2019;178:34-40. PMID: 30959280; https://doi.org/10.1016/j.thromres.2019.03.022.
Park MS, Spears GM, Bailey KR, et al. Thrombin generation profiles as predictors of symptomatic venous thromboembolism after trauma. J Trauma Acute Care Surg. 2017;83(3):381-7. PMID: 28362683; https://doi.org/10.1097/TA.0000000000001466.
Eichinger S, Hron G, Kollars M, Kyrle PA. Prediction of Recurrent Venous Thromboembolism by Endogenous Thrombin Potential and D-Dimer. Clin Chem. 2008;54(12):2042-8. PMID: 18948369; https://doi.org/10.1373/clinchem.2008.112243.
Tripodi A, Legnani C, Chantarangkul V, et al. High thrombin generation measured in the presence of thrombomodulin is associated with an increased risk of recurrent venous thromboembolism. J Thromb Haemost. 2008;6(8):1327-33. PMID: 18485081; https://doi.org/10.1111/j.1538-7836.2008.03018.x.
Duarte RCF, Rios DRA, Rezende SM, et al. Standardization and evaluation of the performance of the thrombin generation test under hypo- and hypercoagulability conditions. Hematol Transfus Cell Ther. 2019;41(3):244-52. PMID: 31085150; https://doi.org/10.1016/j.htct.2018.08.007.
Dargaud Y, Luddington R, Gray E, et al. Effect of standardization and normalization on imprecision of calibrated automated thrombography: An international multicentre study. Br J Haematol. 2007;139(2):303-9. PMID: 17897307; https://doi.org/10.1111/j.1365-2141.2007.06785.x.
Dargaud Y, Luddington R, Gray E, et al. Standardisation of thrombin generation test - which reference plasma for TGT? An international multicentre study. Thromb Res. 2010;125(4):353-6. PMID: 19942257; https://doi.org/10.1016/j.thromres.2009.11.012.
Dargaud Y, Wolberg AS, Luddington R, et al. Evaluation of a standardized protocol for thrombin generation measurement using the calibrated automated thrombogram: An international multicentre study. Thromb Res. 2012;130(6):929-34. PMID: 22909826; https://doi.org/10.1016/j.thromres.2012.07.017.
Dargaud Y, Wolberg AS, Gray E, et al. Proposal for standardized preanalytical and analytical conditions for measuring thrombin generation in hemophilia: communication from the SSC of the ISTH. J Thromb Haemost. 2017;15(8):1704-7. PMID: 28656617; https://doi.org/10.1111/jth.13743.
Bloemen S, Huskens D, Konings J, et al. Interindividual Variability and Normal Ranges of Whole Blood and Plasma Thrombin Generation. J Appl Lab Med An AACC Publ. 2017;2(2):150-64. PMID: 32630978; https://doi.org/10.1373/jalm.2017.023630.
Lundbech M, Krag AE, Christensen TD, Hvas AM. Thrombin generation, thrombin-antithrombin complex, and prothrombin fragment F1+2 as biomarkers for hypercoagulability in cancer patients. Thromb Res. 2020;186:80-5. PMID: 31918352; https://doi.org/10.1016/j.thromres.2019.12.018.
van Paridon PCS, Panova-Noeva M, van Oerle R, et al. Thrombin generation in cardiovascular disease and mortality – results from the Gutenberg Health Study. Haematologica. 2020;105(9):2327-34. PMID: 33054057; https://doi.org/10.3324/haematol.2019.221655.
Ten Cate-Hoek AJ, Dielis AWJH, Spronk HMH, et al. Thrombin generation in patients after acute deep-vein thrombosis. Thromb Haemost. 2008;100(2):240-5. PMID: 18690343; https://doi.org/10.1160/TH08-02-0099.
Haidl H, Cimenti C, Leschnik B, Zach D, Muntean W. Age-dependency of thrombin generation measured by means of calibrated automated thrombography (CAT). Thromb Haemost. 2006;95(5):772-5. PMID: 16676066; https://doi.org/10.1160/TH05-10-0685.
CLSI. Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline 3rd edition. CLSI document EP28-A3c. Wayne, PA: Clinical and Laboratory Standards Institute; 2008. Available from: https://clsi.org/media/1421/ep28a3c_sample.pdf Accessed in 2021 (Oct 7).
Aquino EM, Barreto SM, Bensenor IM, et al. Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): Objectives and design. Am J Epidemiol. 2012;175(4):315-24. PMID: 22234482; https://doi.org/10.1093/aje/kwr294.
Schmidt MI, Duncan BB, Mill JG, et al. Cohort Profile: Longitudinal Study of Adult Health (ELSA-Brasil). Int J Epidemiol. 2015;44(1):68-75. PMID: 24585730; https://doi.org/10.1093/ije/dyu027.
CLSI. Procedures for the collection of diagnostic blood specimens by venipuncture; Approved standard-sixth edition. CLSI document H3-A6. Wayne, PA: Clinical and Laboratory Standards Institute; 2007. Available from: https://webstore.ansi.org/preview-pages/CLSI/preview_CLSI±H3-A6.pdf Accessed in 2021 (Oct 7).
Fedeli LG, Vidigal PG, Leite CM, et al. Logística de coleta e transporte de material biológico e organização do laboratório central no ELSA-Brasil [Logistics of collection and transportation of biological samples and the organization of the central laboratory in the ELSA-Brasil]. Rev Saude Publica. 2013;47 Suppl 2:63-71. PMID: 24346722; https://doi.org/10.1590/s0034-8910.2013047003807.
Loeffen R, Kleinegris MCF, Loubele STBG, et al. Preanalytic variables of thrombin generation: Towards a standard procedure and validation of the method. J Thromb Haemost. 2012;10(12):2544-54. PMID: 23020632; https://doi.org/10.1111/jth.12012.
Besser M, Baglin C, Luddington R, Van Hylckama Vlieg A, Baglin T. High rate of unprovoked recurrent venous thrombosis is associated with high thrombin-generating potential in a prospective cohort study. J Thromb Haemost. 2008;6(10):1720-5. PMID: 18680535; https://doi.org/10.1111/j.1538-7836.2008.03117.x.
Bagot CN, Marsh MS, Whitehead M, et al. The effect of estrone on thrombin generation may explain the different thrombotic risk between oral and transdermal hormone replacement therapy. J Thromb Haemost. 2010;8(8):1736-44. PMID: 20553380; https://doi.org/10.1111/j.1538-7836.2010.03953.x.
Bagot CN, Leishman E. Establishing a reference range for thrombin generation using a standard plasma significantly improves assay precision. Thromb Res. 2015;136(1):139-43. PMID: 25956288; https://doi.org/10.1016/j.thromres.2015.04.020.
Marchetti M, Castoldi E, Spronk HM, et al. Thrombin generation and activated protein C resistance in patients with essential thrombocythemia and polycythemia vera. Blood. 2008;112(10):4061-8. PMID: 18768782; https://doi.org/10.1182/blood-2008-06-164087.
Chaireti R, Rajani R, Bergquist A, et al. Increased thrombin generation in splanchnic vein thrombosis is related to the presence of liver cirrhosis and not to the thrombotic event. Thromb Res. 2014;134(2):455-61. PMID: 24913997; https://doi.org/10.1016/j.thromres.2014.05.012.
Loeffen R, Winckers K, Ford I, et al. Associations between thrombin generation and the risk of cardiovascular disease in elderly patients: Results from the PROSPER Study. J Gerontol A Biol Sci Med Sci. 2015;70(8):982-8. PMID: 25540034; https://doi.org/10.1093/gerona/glu228.
Loeffen R, Godschalk TC, Van Oerle R, et al. The hypercoagulable profile of patients with stent thrombosis. Heart. 2015;101(14):1126-32. PMID: 25999588; http://doi.org/10.1136/heartjnl-2014-306685.
Lowe GD, Rumley A, Woodward M, et al. Epidemiology of coagulation factors, inhibitors and activation markers: The Third Glasgow MONICA Survey I. Illustrative reference ranges by age, sex and hormone use. Br J Haematol. 1997;97(4):775-84. PMID: 9217176; https://doi.org/10.1046/j.1365-2141.1997.1222936.x.
Dielis AW, Castoldi E, Spronk HM, et al. Coagulation factors and the protein C system as determinants of thrombin generation in a normal population. J Thromb Haemost. 2008;6(1):125-31. PMID: 17988231; https://doi.org/10.1111/j.1538-7836.2007.02824.x.
Spronk HM, Dielis AW, De Smedt E, et al. Assessment of thrombin generation II: Validation of the Calibrated Automated Thrombogram in platelet-poor plasma in a clinical laboratory. Thromb Haemost. 2008;100(2):362-4. PMID: 18690360; https://doi.org/10.1160/TH08-03-0141.
Zakai NA, McClure LA. Racial differences in venous thromboembolism. J Thromb Haemost. 2011;9(10):1877-82. PMID: 21797965; https://doi.org/10.1111/j.1538-7836.2011.04443.x.
Zakai N, Lutsey P, Folsom A, Cushman M. Black-white differences in venous thrombosis risk: the longitudinal investigation of thromboembolism etiology (LITE). Blood. 2010;116(21):478. https://doi.org/10.1182/blood.V116.21.478.478.
Iso H, Folsom AR, Wu KK, et al. Hemostatic variables in Japanese and Caucasian men: Plasma fibrinogen, factor VIIc, factor VIIIc, and von Willebrand factor and their relations to cardiovascular disease risk factors. Am J Epidemiol. 1989;130(5):925-34. PMID: 2510500; https://doi.org/10.1093/oxfordjournals.aje.a115425.
Folsom AR, Wu KK, Conlan MG, et al. Distributions of hemostatic variables in blacks and whites: population reference values from the Atherosclerosis Risk in Communities (ARIC) Study. Ethn Dis. 1992;2(1):35-46. PMID: 1458214.
Tan CW, Wong WH, Tan CK, et al. The influence of race on plasma thrombin generation in healthy subjects in Singapore. Clin Appl Thromb. 2018;24(7):1144-7. PMID: 29202603; https://doi.org/10.1177/1076029617744319.
Pena SD, Bastos-Rodrigues L, Pimenta JR, Bydlowski SP. DNA tests probe the genomic ancestry of Brazilians. Braz J Med Biol Res. 2009;42(10):870-6. PMID: 19738982; https://doi.org/10.1590/S0100-879X2009005000026.
Maluf CB, Barreto SM, Vidigal PG. Standardization and reference intervals of platelet volume indices: Insight from the Brazilian longitudinal study of adult health (ELSA-BRASIL). Platelets. 2015;26(5):413-20. PMID: 25101826; https://doi.org/10.3109/09537104.2014.942620.
Solberg HE. Using a hospitalized population to establish reference intervals: pros and cons. Clin Chem. 1994;40(12):2205-6. PMID: 7988005. https://doi.org/10.1093/clinchem/40.12.2205.
Tripodi A. Usefulness of Thrombin Generation. Hamostaseologie. 2020;40(4):509-14. PMID: 32731296; https://doi.org/10.1055/a-1200-0417.