Parkinson’s disease and dopamine transporter neuroimaging

a critical review

Authors

  • Ming Chi Shih Universidade Federal de São Paulo and Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein
  • Marcelo Queiroz Hoexter Universidade Federal de São Paulo and Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein
  • Luiz Augusto Franco de Andrade Universidade Federal de São Paulo and Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein
  • Rodrigo Affonseca Bressan Universidade Federal de São Paulo and Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein

Keywords:

Parkinson disease, Dopamine, Emission-computed tomography, Single-photon emission-computerized tomography, Diagnosis

Abstract

Parkinson’s disease (PD) is a common neuro- degenerative disorder that is mainly caused by dopaminergic neuron loss in the substantia nigra. Several nuclear medicine radiotracers have been developed to evaluate PD diagnoses and disease evolution in vivo in PD patients. Positron emission tomography (PET) and single photon computerized emission tomog- raphy (SPECT) radiotracers for the dopamine transporter (DAT) provide good markers for the integrity of the presynaptic dopaminergic system affected in PD. Over the last decade, radiotracers suitable for imaging the DAT have been the subject of most efforts. In this review, we provide a critical discussion on the utility of DAT imaging for Parkinson’s disease diagnosis (sensitivity and specificity).

Downloads

Download data is not yet available.

Author Biographies

Ming Chi Shih, Universidade Federal de São Paulo and Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein

MD. Laboratório Interdisciplinar de Neuroimagem e Cognição (LiNC), Universidade Federal de São Paulo; and Instituto Israelita de Ensino e Pesquisa (IIEP), Hospital Israelita Albert Einstein (HIAE), São Paulo, Brazil.

Marcelo Queiroz Hoexter, Universidade Federal de São Paulo and Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein

MD. Laboratório Interdisciplinar de Neuroimagem e Cognição (LiNC), Universidade Federal de São Paulo, São Paulo, Brazil.

Luiz Augusto Franco de Andrade, Universidade Federal de São Paulo and Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein

MD, PhD. Instituto Israelita de Ensino e Pesquisa (IIEP), Hospital Israelita Albert Einstein (HIAE), São Paulo, Brazil.

Rodrigo Affonseca Bressan, Universidade Federal de São Paulo and Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein

MD, PhD. Laboratório Interdisciplinar de Neuroimagem e Cognição (LiNC), Universidade Federal de São Paulo, São Paulo, Brazil.

References

Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol. 1999;56(1):33-9.

Dawson TM, Dawson VL. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest. 2003;111(2):145-51.

Tanner CM, Goldman SM. Epidemiology of Parkinson’s disease. Neurol Clin. 1996;14(2):317-35.

Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico- pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3):181-4.

Calne DB, Snow BJ, Lee C. Criteria for diagnosing Parkinson’s disease. Ann Neurol. 1992;32(Suppl):S125-7.

Hansen L, Salmon D, Galasko D, et al. The Lewy body variant of Alzheimer’s disease: a clinical and pathologic entity. Neurology. 1990;40(1):1-8.

Gibb WR, Scaravilli F, Michund J. Lewy bodies and subacute sclerosing panencephalitis. J Neurol Neurosurg Psychiatry. 1990;53(8):710-1.

Ishikawa A, Takahashi H. Clinical and neuropathological aspects of autosomal recessive juvenile parkinsonism. J Neurol. 1998;245(11 Suppl 3):P4-9.

Hughes AJ, Daniel SE, Blankson S, Lees AJ. A clinicopatho- logic study of 100 cases of Parkinson’s disease. Arch Neurol. 1993;50(2):140-8.

Agid Y. Parkinson’s disease: pathophysiology. Lancet. 1991;337(8753):1321-4.

Brooks DJ. PET studies on the early and differential diagnosis of Parkinson’s disease. Neurology. 1993;43(12 Suppl 6):S6-16.

Bressan RA, Erlandsson K, Jones HM, Mulligan RS, Ell PJ, Pilowsky LS. Optimizing limbic selective D2/D3 receptor occupancy by risperidone: a [123I]-epidepride SPET study. J Clin Psychopharmacol. 2003;23(1):5-14.

Frost JJ, Rosier AJ, Reich SG, et al. Positron emission tomo- graphic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson’s disease. Ann Neurol. 1993;34(3):423-31.

Guttman M, Burkholder J, Kish SJ, et al. [11C]RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson’s disease: implications for the symptomatic threshold. Neurology. 1997;48(6):1578-83.

Innis RB. Single-photon emission tomography imaging of dopamine terminal innervation: a potential clinical tool in Parkinson’s disease. Eur J Nucl Med. 1994;21(1):1-5.

Marek KL, Seibyl JP, Zoghbi SS, et al. [123I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology. 1996;46(1):231-7.

Seibyl JP, Marek K, Sheff K, et al. Iodine-123-beta-CIT and iodine-123-FPCIT SPECT measurement of dopamine trans- porters in healthy subjects and Parkinson’s patients. J Nucl Med. 1998;39(9):1500-8.

Booij J, Tissingh G, Winogrodzka A, van Royen EA. Imag- ing of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur J Nucl Med. 1999;26(2):171-82.

Innis RB, Seibyl JP, Scanley BE, et al. Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson disease. Proc Natl Acad Sci USA. 1993;90(24):11965-9.

Iversen LL. Role of transmitter uptake mechanisms in synaptic neurotransmission. Br J Pharmacol. 1971;41(4):571-91.

Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM. The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci. 1996;16(2):436-47.

Giros B, el Mestikawy S, Godinot N, et al. Cloning, pharmacologi- cal characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol. 1992;42(3):383-90.

Donovan DM, Vandenbergh DJ, Perry MP, et al. Human and mouse dopamine transporter genes: conservation of 5’-flanking sequence elements and gene structures. Brain Res Mol Brain Res. 1995;30(2):327-35.

Vandenbergh DJ, Persico AM, Hawkins AL, et al. Human do- pamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics. 1992;14(4):1104-6.

Ciliax BJ, Heilman C, Demchyshyn LL, et al. The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci. 1995;15(3 Pt 1):1714-23.

Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopa- mine loss in the striatum of patients with idiopathic Parkinson’s

disease. Pathophysiologic and clinical implications. N Engl J Med. 1988;318(14):876-80.

Batchelor M, Schenk JO. Protein kinase A activity may kineti- cally upregulate the striatal transporter for dopamine. J Neurosci. 1998;18(24):10304-9.

Chen N, Reith ME. Structure and function of the dopamine transporter. Eur J Pharmacol. 2000;405(1-3):329-39.

Melikian HE, Buckley KM. Membrane trafficking regulates the activity of the human dopamine transporter. J Neurosci. 1999;19(18):7699-710.

Bressan RA, Crippa JA. The role of dopamine in reward and pleasure behaviour-review of data from preclinical research. Acta Psychiatr Scand Suppl. 2005;(427):14-21.

Fowler JS, Volkow ND, Wolf AP, et al. Mapping cocaine binding sites in human and baboon brain in vivo. Synapse. 1989;4(4):371-7.

Volkow ND, Ding YS, Fowler JS, et al. A new PET ligand for the dopamine transporter: studies in the human brain. J Nucl Med. 1995;36(12):2162-8.

Ma SY, Ciliax BJ, Stebbins G, et al. Dopamine transporter-im- munoreactive neurons decrease with age in the human substantia nigra. J Comp Neurol. 1999;409(1):25-37.

Scherman D, Desnos C, Darchen F, Pollak P, Javoy-Agid F, Agid Y. Striatal dopamine deficiency in Parkinson’s disease: role of aging. Ann Neurol. 1989;26(4):551-7.

van Dyck CH, Seibyl JP, Malison RT, et al. Age-related decline in striatal dopamine transporter binding with iodine-123-beta- CITSPECT. J Nucl Med. 1995;36(7):1175-81.

Uhl GR. Neurotransmitter transporters (plus): a promising new gene family. Trends Neurosci. 1992;15(7):265-8.

Wilson JM, Levey AI, Rajput A, et al. Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson’s disease. Neurology. 1996;47(3):718-26.

Niznik HB, Fogel EF, Fassos FF, Seeman P. The dopamine transporter is absent in parkinsonian putamen and reduced in the caudate nucleus. J Neurochem. 1991;56(1):192-8.

Madras BK, Gracz LM, Fahey MA, et al. Altropane, a SPECT or PET imaging probe for dopamine neurons: III. Human dopamine transporter in postmortem normal and Parkinson’s diseased brain. Synapse. 1998;29(2):116-27.

Seibyl JP, Marek KL, Quinlan D, et al. Decreased single-photon emission computed tomographic [123I] beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol. 1995;38(4):589-98.

A multicenter assessment of dopamine transporter imaging with DOPASCAN/SPECT in parkinsonism. Parkinson Study Group. Neurology. 2000;55(10):1540-7.

Leenders KL, Palmer AJ, Quinn N, et al. Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry. 1986;49(8):853-60.

Brooks DJ, Ibanez V, Sawle GV, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple sys- tem atrophy, and progressive supranuclear palsy. Ann Neurol. 1990;28(4):547-55.

Seibyl JP. Single-photon emission computed tomography of the dopamine transporter in parkinsonism. J Neuroimaging. 1999;9(4):223-8.

Ritz MC, Cone EJ, Kuhar MJ. Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transport- ers: a structure-activity study. Life Sci. 1990;46(9):635-45.

Logan J, Fowler JS, Volkow ND, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10(5):740-7.

Telang FW, Volkow ND, Levy A, et al. Distribution of tracer levels of cocaine in the human brain as assessed with averaged [11C] cocaine images. Synapse. 1999;31(4):290-6.

Rinne JO, Ruottinen H, Bergman J, Haaparanta M, Sonninen P, Solin O. Usefulness of a dopamine transporter PET ligand [(18)F]beta-CFT in assessing disability in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999;67(6):737-41.

Rinne JO, Bergman J, Ruottinen H, et al. Striatal uptake of a novel PET ligand, [18F]beta-CFT, is reduced in early Parkinson’s disease. Synapse. 1999;31(2):119-24.

Madras BK, Spealman RD, Fahey MA, Neumeyer JL, Saha JK, Milius RA. Cocaine receptors labeled by [3H]2 beta-car- bomethoxy-3 beta-(4-fluorophenyl)tropane. Mol Pharmacol. 1989;36(4):518-24.

Morris ED, Babich JW, Alpert NM, et al. Quantification of dopamine transporter density in monkeys by dynamic PET imaging of multiple injections of 11C-CFT. Synapse. 1996;24(3):262-72.

Haaparanta M, Bergman J, Laakso A, Hietala J, Solin O. [18F]CFT ([18F]WIN 35,428), a radioligand to study the dopamine transporter with PET: biodistribution in rats. Synapse. 1996;23(4):321-7.

Brownell AL, Elmaleh DR, Meltzer PC, et al. Cocaine congeners as PET imaging probes for dopamine terminals. J Nucl Med. 1996;37(7):1186-92.

Gatley SJ, Ding YS, Volkow ND, Chen R, Sugano Y, Fowler JS. Binding of d-threo-[11C]methylphenidate to the dopamine transporter in vivo: insensitivity to synaptic dopamine. Eur J Pharmacol. 1995;281(2):141-9.

Laruelle M, Giddings SS, Zea-Ponce Y, et al. Methyl 3 beta-(4- [125I] iodophenyl)tropane-2 beta-carboxylate in vitro binding to dopamine and serotonin transporters under “physiological” conditions. J Neurochem. 1994;62(3):978-86.

Brucke T, Kornhuber J, Angelberger P, Asenbaum S, Frassine H, Podreka I. SPECT imaging of dopamine and serotonin transporters with [123I]beta-CIT. Binding kinetics in the human brain. J Neural Transm Gen Sect. 1993;94(2):137-46.

Laruelle M, Wallace E, Seibyl JP, et al. Graphical, kinetic, and equilibrium analyses of in vivo [123I] beta-CIT binding to dopamine transporters in healthy human subjects. J Cereb Blood Flow Metab. 1994;14(6):982-94.

Kuikka JT, Akerman K, Bergstrom KA, et al. Iodine-123 labelled N-(2-fluoroethyl)-2 beta-carbomethoxy-3 beta-(4- iodophenyl)nortropane for dopamine transporter imaging in the living human brain. Eur J Nucl Med. 1995;22(7):682-6.

Antonini A, Moresco RM, Gobbo C, et al. The status of dopamine nerve terminals in Parkinson’s disease and essential tremor: a PET study with the tracer [11-C]FE-CIT. Neurol Sci. 2001;22(1):47-8.

Tissingh G, Booij J, Bergmans P, et al. Iodine-123-N-omega-flu- oropropyl-2beta-carbomethoxy-3beta-(4-iod ophenyl)tropane SPECT in healthy controls and early-stage, drug-naive Parkinson’s disease. J Nucl Med. 1998;39(7):1143-8.

Booij J, Speelman JD, Horstink MW, Wolters EC. The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur J Nucl Med. 2001;28(3):266-72.

Lundkvist C, Halldin C, Ginovart N, Swahn CG, Farde L. [18F] beta-CIT-FP is superior to [11C] beta-CIT-FP for quantitation of the dopamine transporter. Nucl Med Biol. 1997;24(7):621-7.

Chaly T, Dhawan V, Kazumata K, et al. Radiosynthesis of [18F] N-3-fluoropropyl-2-beta-carbomethoxy-3-beta- (4-iodophenyl) nortropane and the first human study with positron emission tomography. Nucl Med Biol. 1996;23(8):999-1004.

Abi-Dargham A, Gandelman MS, DeErausquin GA, et al. SPECT imaging of dopamine transporters in human brain with iodine-123-fluoroalkyl analogs of beta-CIT. J Nucl Med. 1996;37(7):1129-33.

Madras BK, Meltzer PC, Liang AY, Elmaleh DR, Babich J, Fischman AJ. Altropane, a SPECT or PET imaging probe for dopamine neurons: I. Dopamine transporter binding in primate brain. Synapse. 1998;29(2):93-104.

Madras BK, Gracz LM, Meltzer PC, et al. Altropane, a SPECT or PET imaging probe for dopamine neurons: II. Distribu- tion to dopamine-rich regions of primate brain. Synapse. 1998;29(2):105-15.

Fischman AJ, Bonab AA, Babich JW, et al. Rapid detection of Parkinson’s disease by SPECT with altropane: a selective ligand for dopamine transporters. Synapse. 1998;29(2):128-41.

Elmaleh DR, Fischman AJ, Shoup TM, et al. Preparation and biological evaluation of iodine-125-IACFT: a selective SPECT agent for imaging dopamine transporter sites. J Nucl Med. 1996;37(7):1197-202.

Emond P, Garreau L, Chalon S, et al. Synthesis and li- gand binding of nortropane derivatives: N-substituted 2beta-carbomethoxy-3beta-(4’-iodophenyl)nortropane and N-(3-iodoprop-(2E)-enyl)-2beta-carbomethoxy-3beta-(3’,4’- disubstituted phenyl)nortropane. New high-affinity and selec- tive compounds for the dopamine transporter. J Med Chem. 1997;40(9):1366-72.

Chalon S, Garreau L, Emond P, et al. Pharmacological charac- terization of (E)-N-(3-iodoprop-2-enyl)-2beta-carbomethoxy- 3beta-(4’-methylphenyl n ortropane as a selective and potent inhibitor of the neuronal dopamine transporter. J Pharmacol Exp Ther. 1999;291(2):648-54.

Hall H, Halldin C, Guilloteau D, et al. Visualization of the dopa- mine transporter in the human brain postmortem with the new selective ligand [125I]PE2I. Neuroimage. 1999;9(1):108-16.

Guilloteau D, Emond P, Baulieu JL, et al. Exploration of the dopamine transporter: in vitro and in vivo characteriza- tion of a high-affinity and high-specificity iodinated tropane derivative (E)-N-(3-iodoprop-2-enyl)-2beta-carbomethoxy- 3beta-(4’-m ethylph enyl)nortropane (PE2I). Nucl Med Biol. 1998;25(4):331-7.

Poyot T, Conde F, Gregoire MC, et al. Anatomic and biochemical correlates of the dopamine transporter ligand 11C-PE2I in normal and parkinsonian primates: comparison with 6-[18F]fluoro-L-dopa. J Cereb Blood Flow Metab. 2001;21(7):782-92.

Kuikka JT, Tupala E, Bergstrom KA, Hiltunen J, Tiihonen J. Iodine-123 labelled PE2I for dopamine transporter imag- ing: influence of age in healthy subjects. Eur J Nucl Med. 1999;26(11):1486-8.

Repo E, Kuikka JT, Bergstrom KA, Karhu J, Hiltunen J, Tiihonen J. Dopamine transporter and D2-receptor den- sity in late-onset alcoholism. Psychopharmacology (Berl). 1999;147(3):314-8.

Choi SR, Kung MP, Plossl K, Meegalla S, Kung HF. An im- proved kit formulation of a dopamine transporter imaging agent: [Tc-99m]TRODAT-1. Nucl Med Biol. 1999;26(4):461-6.

Acton PD, Kushner SA, Kung MP, Mozley PD, Plossl K, Kung HF. Simplified reference region model for the kinetic analysis of [99mTc]TRODAT-1 binding to dopamine transporters in nonhuman primates using single-photon emission tomography. Eur J Nucl Med. 1999;26(5):518-26.

Kao PF, Tzen KY, Yen TC, et al. The optimal imaging time for [99Tcm]TRODAT-1/SPET in normal subjects and patients with Parkinson’s disease. Nucl Med Commun. 2001;22(2):151-4.

Lee CS, Samii A, Sossi V, et al. In vivo positron emission to- mographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol. 2000;47(4):493-503.

Tatsch K, Asenbaum S, Bartenstein P, et al. European Association of Nuclear Medicine procedure guidelines for brain neurotrans- mission SPET using (123)I-labelled dopamine D(2) transporter ligands. Eur J Nucl Med Mol Imaging. 2002;29(10):BP30-5.

Laine TP, Ahonen A, Torniainen P, et al. Dopamine transporters increase in human brain after alcohol withdrawal. Mol Psychia- try. 1999;4(2):189-91, 104-5.

Laruelle M, Vanisberg MA, Maloteaux JM. Regional and subcellular localization in human brain of [3H]paroxetine binding, a marker of serotonin uptake sites. Biol Psychiatry. 1988;24(3):299-309.

Palacios JM, Camps M, Cortes R, Probst A. Mapping dopa- mine receptors in the human brain. J Neural Transm Suppl. 1988;27:227-35.

De Keyser J, Ebinger G, Vauquelin G. Evidence for a widespread dopaminergic innervation of the human cerebral neocortex. Neurosci Lett. 1989;104(3):281-5.

Schwarz J, Storch A, Koch W, Pogarell O, Radau PE, Tatsch K. Loss of dopamine transporter binding in Parkinson’s disease follows a single exponential rather than linear decline. J Nucl Med. 2004;45(10):1694-7.

Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme; 1988.

Schneier FR, Liebowitz MR, Abi-Dargham A, Zea-Ponce Y, Lin SH, Laruelle M. Low dopamine D(2) receptor binding potential in social phobia. Am J Psychiatry. 2000;157(3):457-9.

Abi-Dargham A, Gandelman MS, DeErausquin GA, et al. SPECT imaging of dopamine transporters in human brain with iodine-123-fluoroalkyl analogs of beta-CIT. J Nucl Med. 1996;37(7):1129-33.

Weng YH, Yen TC, Chen MC, et al. Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson’s disease from healthy subjects. J Nucl Med. 2004;45(3):393-401.

Lingford-Hughes A. There is more to dopamine than just plea- sure. Commentary on Volkow et al. ‘Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies’. Behav Pharmacol. 2002;13(5-6):367-70.

Poewe W, Wenning G. The differential diagnosis of Parkinson’s disease. Eur J Neurol. 2002;9(Suppl 3):23-30.

Brucke T, Asenbaum S, Pirker W, et al. Measurement of the dopaminergic degeneration in Parkinson’s disease with [123I] beta-CIT and SPECT. Correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J Neural Transm Suppl. 1997;50:9-24.

Plotkin M, Amthauer H, Klaffke S, et al. Combined 123I- FP-CIT and 123I-IBZM SPECT for the diagnosis of par- kinsonian syndromes: study on 72 patients. J Neural Transm. 2005;112(5):677-92.

Seppi K, Schocke MF, Esterhammer R, et al. Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy. Neurology. 2003;60(6):922-7.

Schreckenberger M, Hagele S, Siessmeier T, et al. The dopamine D2 receptor ligand 18F-desmethoxyfallypride: an appropriate fluorinated PET tracer for the differential diagnosis of parkin- sonism. Eur J Nucl Med Mol Imaging. 2004;31(8):1128-35.

Antonini A, Benti R, De Notaris R, et al. 123I-Ioflupane/SPECT binding to striatal dopamine transporter (DAT) uptake in patients with Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Neurol Sci. 2003;24(3):149-50.

Knudsen GM, Karlsborg M, Thomsen G, et al. Imaging of dopamine transporters and D2 receptors in patients with Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging. 2004;31(12):1631-8.

Jennings DL, Seibyl JP, Oakes D, Eberly S, Murphy J, Marek K. (123I) beta-CIT and single-photon emission computed tomo- graphic imaging vs clinical evaluation in Parkinsonian syndrome: unmasking an early diagnosis. Arch Neurol. 2004;61(8):1224-9.

Stoffers D, Booij J, Bosscher L, Winogrodzka A, Wolters EC, Berendse HW. Early-stage [123I]beta-CIT SPECT and long-term clinical follow-up in patients with an initial diagnosis of Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2005;32(6):689-95.

Benamer TS, Patterson J, Grosset DG, et al. Accurate differentia- tion of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15(3):503-10.

Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord. 2000;15(4):692-8.

Varrone A, Pellecchia MT, Amboni M, et al. Imaging of dopa- minergic dysfunction with [123I]FP-CIT SPECT in early-onset parkin disease. Neurology. 2004;63(11):2097-103.

Weng YH, Yen TC, Chen MC, et al. Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson’s disease from healthy subjects. J Nucl Med. 2004;45(3):393-401.

Huang WS, Lin SZ, Lin JC, Wey SP, Ting G, Liu RS. Evalua- tion of early-stage Parkinson’s disease with 99mTc-TRODAT-1 imaging. J Nucl Med. 2001;42(9):1303-8.

Kanyo B, Argyelan M, Dibo G, et al. Dopamintranszporter- vizsgálatok egyfoton-emissziós komputertomográfiával (SPECT) mozgászavarokkal járó kórképekben. [Imaging of dopamine transporter with Tc99m-Trodat-SPECT in movement disor- ders]. Ideggyogy Sz. 2003;56(7-8):231-40.

Huang WS, Chiang YH, Lin JC, Chou YH, Cheng CY, Liu RS. Crossover study of (99m)Tc-TRODAT-1 SPECT and (18)F-FDOPA PET in Parkinson’s disease patients. J Nucl Med. 2003;44(7):999-1005.

Hwang WJ, Yao WJ, Wey SP, Ting G. Reproducibility of 99mTc- TRODAT-1 SPECT measurement of dopamine transporters in Parkinson’s disease. J Nucl Med. 2004;45(2):207-13.

Chou KL, Hurtig HI, Stern MB, et al. Diagnostic accuracy of [99mTc]TRODAT-1 SPECT imaging in early Parkinson’s disease. Parkinsonism Relat Disord. 2004;10(6):375-9.

Huang WS, Lee MS, Lin JC, et al. Usefulness of brain 99mTc- TRODAT-1 SPET for the evaluation of Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2004;31(2):155-61.

Weng YH, Yen TC, Chen MC, et al. Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson’s disease from healthy subjects. J Nucl Med. 2004;45(3):393-401.

Van Laere K, De Ceuninck L, Dom R, et al. Dopamine trans- porter SPECT using fast kinetic ligands: 123I-FP-beta-CIT versus 99mTc-TRODAT-1. Eur J Nucl Med Mol Imaging. 2004;31(8):1119-27.

Schwarz J, Linke R, Kerner M, et al. Striatal dopamine trans- porter binding assessed by [I-123]IPT and single photon emis- sion computed tomography in patients with early Parkinson’s disease: implications for a preclinical diagnosis. Arch Neurol. 2000;57(2):205-8.

Prunier C, Bezard E, Montharu J, et al. Presymptomatic diag- nosis of experimental Parkinsonism with 123I-PE2I SPECT. Neuroimage. 2003;19(3):810-6.

Kaufman MJ, Madras BK. Severe depletion of cocaine rec- ognition sites associated with the dopamine transporter in Parkinson’s-diseased striatum. Synapse. 1991;9(1):43-9.

Wilson JM, Levey AI, Rajput A, et al. Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson’s disease. Neurology. 1996;47(3):718-26.

Mozley PD, Schneider JS, Acton PD, et al. Binding of [99mTc]TRODAT-1 to dopamine transporters in patients with Parkinson’s disease and in healthy volunteers. J Nucl Med. 2000;41(4):584-9.

Choi SR, Kung MP, Plossl K, Meegalla S, Kung HF. An im- proved kit formulation of a dopamine transporter imaging agent: [Tc-99m]TRODAT-1. Nucl Med Biol. 1999;26(4):461-6.

Gibb WR. Functional neuropathology in Parkinson’s disease. Eur Neurol. 1997;38(Suppl 2):21-5.

Marek K, Innis R, van Dyck C, et al. [123I]beta-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology. 2001;57(11):2089-94.

Pirker W, Holler I, Gerschlager W, Asenbaum S, Zettinig G, Brucke T. Measuring the rate of progression of Parkinson’s dis- ease over a 5-year period with beta-CIT SPECT. Mov Disord. 2003;18(11):1266-72.

Pirker W, Djamshidian S, Asenbaum S, et al. Progression of dopaminergic degeneration in Parkinson’s disease and atypical parkinsonism: a longitudinal beta-CIT SPECT study. Mov Disord. 2002;17(1):45-53.

Chouker M, Tatsch K, Linke R, Pogarell O, Hahn K, Schwarz J. Striatal dopamine transporter binding in early to moderately advanced Parkinson’s disease: monitoring of disease progression over 2 years. Nucl Med Commun. 2001;22(6):721-5.

Staffen W, Mair A, Unterrainer J, Trinka E, Ladurner G. Measur- ing the progression of idiopathic Parkinson’s disease with [123I] beta-CIT SPECT. J Neural Transm. 2000;107(5):543-52.

Ravina B, Eidelberg D, Ahlskog JE, et al. The role of radiotracer imaging in Parkinson disease. Neurology. 2005;64(2):208-15.

Faherty CJ, Raviie Shepherd K, Herasimtschuk A, Smeyne RJ. Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism. Brain Res Mol Brain Res. 2005;134(1):170-9.

Riederer P, Lachenmayer L, Laux G. Clinical applications of MAO-inhibitors. Curr Med Chem. 2004;11(15):2033-43.

Agnati LF, Leo G, Vergoni AV, et al. Neuroprotective effect of L-DOPA co-administered with the adenosine A2A receptor agonist CGS 21680 in an animal model of Parkinson’s disease. Brain Res Bull. 2004;64(2):155-64.

Fraix V. Thérapie génique et maladie de Parkinson. [Gene therapy for Parkinson’s disease]. Rev Med Interne. 2004;25(7):524-7.

Bressan RA, Bigliani V, Pilowsky LS. Neuroimagem de recep- tores D2 de dopamina na esquizofrenia. [Neuroimaging of D2 dopamine receptors in schizophrenia]. Rev Bras Psiquiatr. 2001;23(Supl 1):SI46:SI64-SI49-SI64.

Costa DC, Oliveira JM, Bressan RA. PET e SPECT em neu- rologia e psiquiatria: do básico às aplicacöes clínicas. [PET and SPECT in Neurology and Psychiatry: From the basic to the clinical applications]. Rev Bras Psiquiatr. 2001;23(Supl 1):SI4: SI61-SI5-SI61.

Shih MC, Rodrigues GS, Cuyumjian PR, et al. SPECT com [99mTc]-TRODAT-1; definição de protocolo de aquisição com marcador de transportador dopaminérgico. Rev Imagem. 2004;26(Suplemento 1):100 [abstract].

Shih MC, Amaro E, Goulart FO, et al. Striatal functional imaging [99mTc]-TRODAT-1 SPECT and spectroscopic from magnetic resonance study to evaluate dopamine neuron density. J Nucl Med. 2005;46(Suppl 5):215. [poster].

Shih MC, Amaro Jr E, Ferraz HB, et al. Neuroimaging of the Dopamine Transporter in Parkinson´s Disease – First study using [99mTc]-TRODAT-1 and SPECT in Brazil. Arq Neuropsiquiatr (in press).

Downloads

Published

2006-05-05

How to Cite

1.
Shih MC, Hoexter MQ, Andrade LAF de, Bressan RA. Parkinson’s disease and dopamine transporter neuroimaging: a critical review. Sao Paulo Med J [Internet]. 2006 May 5 [cited 2025 Mar. 9];124(3):168-75. Available from: https://periodicosapm.emnuvens.com.br/spmj/article/view/2219

Issue

Section

Review Article