Doença de Parkinson e neuroimagem do transportador de dopamina
uma revisão crítica
Palavras-chave:
Doença de Parkinson, Dopamina, Tomografia computadorizada de emissão, Tomografia computadorizada de emissão de fóton único, DiagnósticoResumo
A doença de Parkinson (DP) é uma desordem neurodegenerativa causada por perda de neurônios do- paminérgicos na substância negra. Vários traçadores da medicina nuclear têm sido desenvolvidos para avaliar o diagnóstico e acompanhamento da DP. Traçadores para o transportador de dopamina (TDA) utilizados na tomografia por emissão de pósitrons (PET) e tomografia por emissão de fóton único (SPECT) demonstram boa marcação na integridade de sistema dopaminergico pré-sináptico, afetada na DP. Na última década, radiotraçadores apropriados para imagens de TDA têm sido mais estudados. Nesta revisão, provemos uma discussão crítica sobre a utilidade dessas imagens de TDA para o diagnóstico de DP (sensibilidade e especificidade).
Downloads
Referências
Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol. 1999;56(1):33-9.
Dawson TM, Dawson VL. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest. 2003;111(2):145-51.
Tanner CM, Goldman SM. Epidemiology of Parkinson’s disease. Neurol Clin. 1996;14(2):317-35.
Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico- pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3):181-4.
Calne DB, Snow BJ, Lee C. Criteria for diagnosing Parkinson’s disease. Ann Neurol. 1992;32(Suppl):S125-7.
Hansen L, Salmon D, Galasko D, et al. The Lewy body variant of Alzheimer’s disease: a clinical and pathologic entity. Neurology. 1990;40(1):1-8.
Gibb WR, Scaravilli F, Michund J. Lewy bodies and subacute sclerosing panencephalitis. J Neurol Neurosurg Psychiatry. 1990;53(8):710-1.
Ishikawa A, Takahashi H. Clinical and neuropathological aspects of autosomal recessive juvenile parkinsonism. J Neurol. 1998;245(11 Suppl 3):P4-9.
Hughes AJ, Daniel SE, Blankson S, Lees AJ. A clinicopatho- logic study of 100 cases of Parkinson’s disease. Arch Neurol. 1993;50(2):140-8.
Agid Y. Parkinson’s disease: pathophysiology. Lancet. 1991;337(8753):1321-4.
Brooks DJ. PET studies on the early and differential diagnosis of Parkinson’s disease. Neurology. 1993;43(12 Suppl 6):S6-16.
Bressan RA, Erlandsson K, Jones HM, Mulligan RS, Ell PJ, Pilowsky LS. Optimizing limbic selective D2/D3 receptor occupancy by risperidone: a [123I]-epidepride SPET study. J Clin Psychopharmacol. 2003;23(1):5-14.
Frost JJ, Rosier AJ, Reich SG, et al. Positron emission tomo- graphic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson’s disease. Ann Neurol. 1993;34(3):423-31.
Guttman M, Burkholder J, Kish SJ, et al. [11C]RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson’s disease: implications for the symptomatic threshold. Neurology. 1997;48(6):1578-83.
Innis RB. Single-photon emission tomography imaging of dopamine terminal innervation: a potential clinical tool in Parkinson’s disease. Eur J Nucl Med. 1994;21(1):1-5.
Marek KL, Seibyl JP, Zoghbi SS, et al. [123I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology. 1996;46(1):231-7.
Seibyl JP, Marek K, Sheff K, et al. Iodine-123-beta-CIT and iodine-123-FPCIT SPECT measurement of dopamine trans- porters in healthy subjects and Parkinson’s patients. J Nucl Med. 1998;39(9):1500-8.
Booij J, Tissingh G, Winogrodzka A, van Royen EA. Imag- ing of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur J Nucl Med. 1999;26(2):171-82.
Innis RB, Seibyl JP, Scanley BE, et al. Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson disease. Proc Natl Acad Sci USA. 1993;90(24):11965-9.
Iversen LL. Role of transmitter uptake mechanisms in synaptic neurotransmission. Br J Pharmacol. 1971;41(4):571-91.
Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM. The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci. 1996;16(2):436-47.
Giros B, el Mestikawy S, Godinot N, et al. Cloning, pharmacologi- cal characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol. 1992;42(3):383-90.
Donovan DM, Vandenbergh DJ, Perry MP, et al. Human and mouse dopamine transporter genes: conservation of 5’-flanking sequence elements and gene structures. Brain Res Mol Brain Res. 1995;30(2):327-35.
Vandenbergh DJ, Persico AM, Hawkins AL, et al. Human do- pamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics. 1992;14(4):1104-6.
Ciliax BJ, Heilman C, Demchyshyn LL, et al. The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci. 1995;15(3 Pt 1):1714-23.
Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopa- mine loss in the striatum of patients with idiopathic Parkinson’s
disease. Pathophysiologic and clinical implications. N Engl J Med. 1988;318(14):876-80.
Batchelor M, Schenk JO. Protein kinase A activity may kineti- cally upregulate the striatal transporter for dopamine. J Neurosci. 1998;18(24):10304-9.
Chen N, Reith ME. Structure and function of the dopamine transporter. Eur J Pharmacol. 2000;405(1-3):329-39.
Melikian HE, Buckley KM. Membrane trafficking regulates the activity of the human dopamine transporter. J Neurosci. 1999;19(18):7699-710.
Bressan RA, Crippa JA. The role of dopamine in reward and pleasure behaviour-review of data from preclinical research. Acta Psychiatr Scand Suppl. 2005;(427):14-21.
Fowler JS, Volkow ND, Wolf AP, et al. Mapping cocaine binding sites in human and baboon brain in vivo. Synapse. 1989;4(4):371-7.
Volkow ND, Ding YS, Fowler JS, et al. A new PET ligand for the dopamine transporter: studies in the human brain. J Nucl Med. 1995;36(12):2162-8.
Ma SY, Ciliax BJ, Stebbins G, et al. Dopamine transporter-im- munoreactive neurons decrease with age in the human substantia nigra. J Comp Neurol. 1999;409(1):25-37.
Scherman D, Desnos C, Darchen F, Pollak P, Javoy-Agid F, Agid Y. Striatal dopamine deficiency in Parkinson’s disease: role of aging. Ann Neurol. 1989;26(4):551-7.
van Dyck CH, Seibyl JP, Malison RT, et al. Age-related decline in striatal dopamine transporter binding with iodine-123-beta- CITSPECT. J Nucl Med. 1995;36(7):1175-81.
Uhl GR. Neurotransmitter transporters (plus): a promising new gene family. Trends Neurosci. 1992;15(7):265-8.
Wilson JM, Levey AI, Rajput A, et al. Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson’s disease. Neurology. 1996;47(3):718-26.
Niznik HB, Fogel EF, Fassos FF, Seeman P. The dopamine transporter is absent in parkinsonian putamen and reduced in the caudate nucleus. J Neurochem. 1991;56(1):192-8.
Madras BK, Gracz LM, Fahey MA, et al. Altropane, a SPECT or PET imaging probe for dopamine neurons: III. Human dopamine transporter in postmortem normal and Parkinson’s diseased brain. Synapse. 1998;29(2):116-27.
Seibyl JP, Marek KL, Quinlan D, et al. Decreased single-photon emission computed tomographic [123I] beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol. 1995;38(4):589-98.
A multicenter assessment of dopamine transporter imaging with DOPASCAN/SPECT in parkinsonism. Parkinson Study Group. Neurology. 2000;55(10):1540-7.
Leenders KL, Palmer AJ, Quinn N, et al. Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry. 1986;49(8):853-60.
Brooks DJ, Ibanez V, Sawle GV, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple sys- tem atrophy, and progressive supranuclear palsy. Ann Neurol. 1990;28(4):547-55.
Seibyl JP. Single-photon emission computed tomography of the dopamine transporter in parkinsonism. J Neuroimaging. 1999;9(4):223-8.
Ritz MC, Cone EJ, Kuhar MJ. Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transport- ers: a structure-activity study. Life Sci. 1990;46(9):635-45.
Logan J, Fowler JS, Volkow ND, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10(5):740-7.
Telang FW, Volkow ND, Levy A, et al. Distribution of tracer levels of cocaine in the human brain as assessed with averaged [11C] cocaine images. Synapse. 1999;31(4):290-6.
Rinne JO, Ruottinen H, Bergman J, Haaparanta M, Sonninen P, Solin O. Usefulness of a dopamine transporter PET ligand [(18)F]beta-CFT in assessing disability in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999;67(6):737-41.
Rinne JO, Bergman J, Ruottinen H, et al. Striatal uptake of a novel PET ligand, [18F]beta-CFT, is reduced in early Parkinson’s disease. Synapse. 1999;31(2):119-24.
Madras BK, Spealman RD, Fahey MA, Neumeyer JL, Saha JK, Milius RA. Cocaine receptors labeled by [3H]2 beta-car- bomethoxy-3 beta-(4-fluorophenyl)tropane. Mol Pharmacol. 1989;36(4):518-24.
Morris ED, Babich JW, Alpert NM, et al. Quantification of dopamine transporter density in monkeys by dynamic PET imaging of multiple injections of 11C-CFT. Synapse. 1996;24(3):262-72.
Haaparanta M, Bergman J, Laakso A, Hietala J, Solin O. [18F]CFT ([18F]WIN 35,428), a radioligand to study the dopamine transporter with PET: biodistribution in rats. Synapse. 1996;23(4):321-7.
Brownell AL, Elmaleh DR, Meltzer PC, et al. Cocaine congeners as PET imaging probes for dopamine terminals. J Nucl Med. 1996;37(7):1186-92.
Gatley SJ, Ding YS, Volkow ND, Chen R, Sugano Y, Fowler JS. Binding of d-threo-[11C]methylphenidate to the dopamine transporter in vivo: insensitivity to synaptic dopamine. Eur J Pharmacol. 1995;281(2):141-9.
Laruelle M, Giddings SS, Zea-Ponce Y, et al. Methyl 3 beta-(4- [125I] iodophenyl)tropane-2 beta-carboxylate in vitro binding to dopamine and serotonin transporters under “physiological” conditions. J Neurochem. 1994;62(3):978-86.
Brucke T, Kornhuber J, Angelberger P, Asenbaum S, Frassine H, Podreka I. SPECT imaging of dopamine and serotonin transporters with [123I]beta-CIT. Binding kinetics in the human brain. J Neural Transm Gen Sect. 1993;94(2):137-46.
Laruelle M, Wallace E, Seibyl JP, et al. Graphical, kinetic, and equilibrium analyses of in vivo [123I] beta-CIT binding to dopamine transporters in healthy human subjects. J Cereb Blood Flow Metab. 1994;14(6):982-94.
Kuikka JT, Akerman K, Bergstrom KA, et al. Iodine-123 labelled N-(2-fluoroethyl)-2 beta-carbomethoxy-3 beta-(4- iodophenyl)nortropane for dopamine transporter imaging in the living human brain. Eur J Nucl Med. 1995;22(7):682-6.
Antonini A, Moresco RM, Gobbo C, et al. The status of dopamine nerve terminals in Parkinson’s disease and essential tremor: a PET study with the tracer [11-C]FE-CIT. Neurol Sci. 2001;22(1):47-8.
Tissingh G, Booij J, Bergmans P, et al. Iodine-123-N-omega-flu- oropropyl-2beta-carbomethoxy-3beta-(4-iod ophenyl)tropane SPECT in healthy controls and early-stage, drug-naive Parkinson’s disease. J Nucl Med. 1998;39(7):1143-8.
Booij J, Speelman JD, Horstink MW, Wolters EC. The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur J Nucl Med. 2001;28(3):266-72.
Lundkvist C, Halldin C, Ginovart N, Swahn CG, Farde L. [18F] beta-CIT-FP is superior to [11C] beta-CIT-FP for quantitation of the dopamine transporter. Nucl Med Biol. 1997;24(7):621-7.
Chaly T, Dhawan V, Kazumata K, et al. Radiosynthesis of [18F] N-3-fluoropropyl-2-beta-carbomethoxy-3-beta- (4-iodophenyl) nortropane and the first human study with positron emission tomography. Nucl Med Biol. 1996;23(8):999-1004.
Abi-Dargham A, Gandelman MS, DeErausquin GA, et al. SPECT imaging of dopamine transporters in human brain with iodine-123-fluoroalkyl analogs of beta-CIT. J Nucl Med. 1996;37(7):1129-33.
Madras BK, Meltzer PC, Liang AY, Elmaleh DR, Babich J, Fischman AJ. Altropane, a SPECT or PET imaging probe for dopamine neurons: I. Dopamine transporter binding in primate brain. Synapse. 1998;29(2):93-104.
Madras BK, Gracz LM, Meltzer PC, et al. Altropane, a SPECT or PET imaging probe for dopamine neurons: II. Distribu- tion to dopamine-rich regions of primate brain. Synapse. 1998;29(2):105-15.
Fischman AJ, Bonab AA, Babich JW, et al. Rapid detection of Parkinson’s disease by SPECT with altropane: a selective ligand for dopamine transporters. Synapse. 1998;29(2):128-41.
Elmaleh DR, Fischman AJ, Shoup TM, et al. Preparation and biological evaluation of iodine-125-IACFT: a selective SPECT agent for imaging dopamine transporter sites. J Nucl Med. 1996;37(7):1197-202.
Emond P, Garreau L, Chalon S, et al. Synthesis and li- gand binding of nortropane derivatives: N-substituted 2beta-carbomethoxy-3beta-(4’-iodophenyl)nortropane and N-(3-iodoprop-(2E)-enyl)-2beta-carbomethoxy-3beta-(3’,4’- disubstituted phenyl)nortropane. New high-affinity and selec- tive compounds for the dopamine transporter. J Med Chem. 1997;40(9):1366-72.
Chalon S, Garreau L, Emond P, et al. Pharmacological charac- terization of (E)-N-(3-iodoprop-2-enyl)-2beta-carbomethoxy- 3beta-(4’-methylphenyl n ortropane as a selective and potent inhibitor of the neuronal dopamine transporter. J Pharmacol Exp Ther. 1999;291(2):648-54.
Hall H, Halldin C, Guilloteau D, et al. Visualization of the dopa- mine transporter in the human brain postmortem with the new selective ligand [125I]PE2I. Neuroimage. 1999;9(1):108-16.
Guilloteau D, Emond P, Baulieu JL, et al. Exploration of the dopamine transporter: in vitro and in vivo characteriza- tion of a high-affinity and high-specificity iodinated tropane derivative (E)-N-(3-iodoprop-2-enyl)-2beta-carbomethoxy- 3beta-(4’-m ethylph enyl)nortropane (PE2I). Nucl Med Biol. 1998;25(4):331-7.
Poyot T, Conde F, Gregoire MC, et al. Anatomic and biochemical correlates of the dopamine transporter ligand 11C-PE2I in normal and parkinsonian primates: comparison with 6-[18F]fluoro-L-dopa. J Cereb Blood Flow Metab. 2001;21(7):782-92.
Kuikka JT, Tupala E, Bergstrom KA, Hiltunen J, Tiihonen J. Iodine-123 labelled PE2I for dopamine transporter imag- ing: influence of age in healthy subjects. Eur J Nucl Med. 1999;26(11):1486-8.
Repo E, Kuikka JT, Bergstrom KA, Karhu J, Hiltunen J, Tiihonen J. Dopamine transporter and D2-receptor den- sity in late-onset alcoholism. Psychopharmacology (Berl). 1999;147(3):314-8.
Choi SR, Kung MP, Plossl K, Meegalla S, Kung HF. An im- proved kit formulation of a dopamine transporter imaging agent: [Tc-99m]TRODAT-1. Nucl Med Biol. 1999;26(4):461-6.
Acton PD, Kushner SA, Kung MP, Mozley PD, Plossl K, Kung HF. Simplified reference region model for the kinetic analysis of [99mTc]TRODAT-1 binding to dopamine transporters in nonhuman primates using single-photon emission tomography. Eur J Nucl Med. 1999;26(5):518-26.
Kao PF, Tzen KY, Yen TC, et al. The optimal imaging time for [99Tcm]TRODAT-1/SPET in normal subjects and patients with Parkinson’s disease. Nucl Med Commun. 2001;22(2):151-4.
Lee CS, Samii A, Sossi V, et al. In vivo positron emission to- mographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol. 2000;47(4):493-503.
Tatsch K, Asenbaum S, Bartenstein P, et al. European Association of Nuclear Medicine procedure guidelines for brain neurotrans- mission SPET using (123)I-labelled dopamine D(2) transporter ligands. Eur J Nucl Med Mol Imaging. 2002;29(10):BP30-5.
Laine TP, Ahonen A, Torniainen P, et al. Dopamine transporters increase in human brain after alcohol withdrawal. Mol Psychia- try. 1999;4(2):189-91, 104-5.
Laruelle M, Vanisberg MA, Maloteaux JM. Regional and subcellular localization in human brain of [3H]paroxetine binding, a marker of serotonin uptake sites. Biol Psychiatry. 1988;24(3):299-309.
Palacios JM, Camps M, Cortes R, Probst A. Mapping dopa- mine receptors in the human brain. J Neural Transm Suppl. 1988;27:227-35.
De Keyser J, Ebinger G, Vauquelin G. Evidence for a widespread dopaminergic innervation of the human cerebral neocortex. Neurosci Lett. 1989;104(3):281-5.
Schwarz J, Storch A, Koch W, Pogarell O, Radau PE, Tatsch K. Loss of dopamine transporter binding in Parkinson’s disease follows a single exponential rather than linear decline. J Nucl Med. 2004;45(10):1694-7.
Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme; 1988.
Schneier FR, Liebowitz MR, Abi-Dargham A, Zea-Ponce Y, Lin SH, Laruelle M. Low dopamine D(2) receptor binding potential in social phobia. Am J Psychiatry. 2000;157(3):457-9.
Abi-Dargham A, Gandelman MS, DeErausquin GA, et al. SPECT imaging of dopamine transporters in human brain with iodine-123-fluoroalkyl analogs of beta-CIT. J Nucl Med. 1996;37(7):1129-33.
Weng YH, Yen TC, Chen MC, et al. Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson’s disease from healthy subjects. J Nucl Med. 2004;45(3):393-401.
Lingford-Hughes A. There is more to dopamine than just plea- sure. Commentary on Volkow et al. ‘Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies’. Behav Pharmacol. 2002;13(5-6):367-70.
Poewe W, Wenning G. The differential diagnosis of Parkinson’s disease. Eur J Neurol. 2002;9(Suppl 3):23-30.
Brucke T, Asenbaum S, Pirker W, et al. Measurement of the dopaminergic degeneration in Parkinson’s disease with [123I] beta-CIT and SPECT. Correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J Neural Transm Suppl. 1997;50:9-24.
Plotkin M, Amthauer H, Klaffke S, et al. Combined 123I- FP-CIT and 123I-IBZM SPECT for the diagnosis of par- kinsonian syndromes: study on 72 patients. J Neural Transm. 2005;112(5):677-92.
Seppi K, Schocke MF, Esterhammer R, et al. Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy. Neurology. 2003;60(6):922-7.
Schreckenberger M, Hagele S, Siessmeier T, et al. The dopamine D2 receptor ligand 18F-desmethoxyfallypride: an appropriate fluorinated PET tracer for the differential diagnosis of parkin- sonism. Eur J Nucl Med Mol Imaging. 2004;31(8):1128-35.
Antonini A, Benti R, De Notaris R, et al. 123I-Ioflupane/SPECT binding to striatal dopamine transporter (DAT) uptake in patients with Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Neurol Sci. 2003;24(3):149-50.
Knudsen GM, Karlsborg M, Thomsen G, et al. Imaging of dopamine transporters and D2 receptors in patients with Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging. 2004;31(12):1631-8.
Jennings DL, Seibyl JP, Oakes D, Eberly S, Murphy J, Marek K. (123I) beta-CIT and single-photon emission computed tomo- graphic imaging vs clinical evaluation in Parkinsonian syndrome: unmasking an early diagnosis. Arch Neurol. 2004;61(8):1224-9.
Stoffers D, Booij J, Bosscher L, Winogrodzka A, Wolters EC, Berendse HW. Early-stage [123I]beta-CIT SPECT and long-term clinical follow-up in patients with an initial diagnosis of Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2005;32(6):689-95.
Benamer TS, Patterson J, Grosset DG, et al. Accurate differentia- tion of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord. 2000;15(3):503-10.
Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord. 2000;15(4):692-8.
Varrone A, Pellecchia MT, Amboni M, et al. Imaging of dopa- minergic dysfunction with [123I]FP-CIT SPECT in early-onset parkin disease. Neurology. 2004;63(11):2097-103.
Weng YH, Yen TC, Chen MC, et al. Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson’s disease from healthy subjects. J Nucl Med. 2004;45(3):393-401.
Huang WS, Lin SZ, Lin JC, Wey SP, Ting G, Liu RS. Evalua- tion of early-stage Parkinson’s disease with 99mTc-TRODAT-1 imaging. J Nucl Med. 2001;42(9):1303-8.
Kanyo B, Argyelan M, Dibo G, et al. Dopamintranszporter- vizsgálatok egyfoton-emissziós komputertomográfiával (SPECT) mozgászavarokkal járó kórképekben. [Imaging of dopamine transporter with Tc99m-Trodat-SPECT in movement disor- ders]. Ideggyogy Sz. 2003;56(7-8):231-40.
Huang WS, Chiang YH, Lin JC, Chou YH, Cheng CY, Liu RS. Crossover study of (99m)Tc-TRODAT-1 SPECT and (18)F-FDOPA PET in Parkinson’s disease patients. J Nucl Med. 2003;44(7):999-1005.
Hwang WJ, Yao WJ, Wey SP, Ting G. Reproducibility of 99mTc- TRODAT-1 SPECT measurement of dopamine transporters in Parkinson’s disease. J Nucl Med. 2004;45(2):207-13.
Chou KL, Hurtig HI, Stern MB, et al. Diagnostic accuracy of [99mTc]TRODAT-1 SPECT imaging in early Parkinson’s disease. Parkinsonism Relat Disord. 2004;10(6):375-9.
Huang WS, Lee MS, Lin JC, et al. Usefulness of brain 99mTc- TRODAT-1 SPET for the evaluation of Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2004;31(2):155-61.
Weng YH, Yen TC, Chen MC, et al. Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson’s disease from healthy subjects. J Nucl Med. 2004;45(3):393-401.
Van Laere K, De Ceuninck L, Dom R, et al. Dopamine trans- porter SPECT using fast kinetic ligands: 123I-FP-beta-CIT versus 99mTc-TRODAT-1. Eur J Nucl Med Mol Imaging. 2004;31(8):1119-27.
Schwarz J, Linke R, Kerner M, et al. Striatal dopamine trans- porter binding assessed by [I-123]IPT and single photon emis- sion computed tomography in patients with early Parkinson’s disease: implications for a preclinical diagnosis. Arch Neurol. 2000;57(2):205-8.
Prunier C, Bezard E, Montharu J, et al. Presymptomatic diag- nosis of experimental Parkinsonism with 123I-PE2I SPECT. Neuroimage. 2003;19(3):810-6.
Kaufman MJ, Madras BK. Severe depletion of cocaine rec- ognition sites associated with the dopamine transporter in Parkinson’s-diseased striatum. Synapse. 1991;9(1):43-9.
Wilson JM, Levey AI, Rajput A, et al. Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson’s disease. Neurology. 1996;47(3):718-26.
Mozley PD, Schneider JS, Acton PD, et al. Binding of [99mTc]TRODAT-1 to dopamine transporters in patients with Parkinson’s disease and in healthy volunteers. J Nucl Med. 2000;41(4):584-9.
Choi SR, Kung MP, Plossl K, Meegalla S, Kung HF. An im- proved kit formulation of a dopamine transporter imaging agent: [Tc-99m]TRODAT-1. Nucl Med Biol. 1999;26(4):461-6.
Gibb WR. Functional neuropathology in Parkinson’s disease. Eur Neurol. 1997;38(Suppl 2):21-5.
Marek K, Innis R, van Dyck C, et al. [123I]beta-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology. 2001;57(11):2089-94.
Pirker W, Holler I, Gerschlager W, Asenbaum S, Zettinig G, Brucke T. Measuring the rate of progression of Parkinson’s dis- ease over a 5-year period with beta-CIT SPECT. Mov Disord. 2003;18(11):1266-72.
Pirker W, Djamshidian S, Asenbaum S, et al. Progression of dopaminergic degeneration in Parkinson’s disease and atypical parkinsonism: a longitudinal beta-CIT SPECT study. Mov Disord. 2002;17(1):45-53.
Chouker M, Tatsch K, Linke R, Pogarell O, Hahn K, Schwarz J. Striatal dopamine transporter binding in early to moderately advanced Parkinson’s disease: monitoring of disease progression over 2 years. Nucl Med Commun. 2001;22(6):721-5.
Staffen W, Mair A, Unterrainer J, Trinka E, Ladurner G. Measur- ing the progression of idiopathic Parkinson’s disease with [123I] beta-CIT SPECT. J Neural Transm. 2000;107(5):543-52.
Ravina B, Eidelberg D, Ahlskog JE, et al. The role of radiotracer imaging in Parkinson disease. Neurology. 2005;64(2):208-15.
Faherty CJ, Raviie Shepherd K, Herasimtschuk A, Smeyne RJ. Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism. Brain Res Mol Brain Res. 2005;134(1):170-9.
Riederer P, Lachenmayer L, Laux G. Clinical applications of MAO-inhibitors. Curr Med Chem. 2004;11(15):2033-43.
Agnati LF, Leo G, Vergoni AV, et al. Neuroprotective effect of L-DOPA co-administered with the adenosine A2A receptor agonist CGS 21680 in an animal model of Parkinson’s disease. Brain Res Bull. 2004;64(2):155-64.
Fraix V. Thérapie génique et maladie de Parkinson. [Gene therapy for Parkinson’s disease]. Rev Med Interne. 2004;25(7):524-7.
Bressan RA, Bigliani V, Pilowsky LS. Neuroimagem de recep- tores D2 de dopamina na esquizofrenia. [Neuroimaging of D2 dopamine receptors in schizophrenia]. Rev Bras Psiquiatr. 2001;23(Supl 1):SI46:SI64-SI49-SI64.
Costa DC, Oliveira JM, Bressan RA. PET e SPECT em neu- rologia e psiquiatria: do básico às aplicacöes clínicas. [PET and SPECT in Neurology and Psychiatry: From the basic to the clinical applications]. Rev Bras Psiquiatr. 2001;23(Supl 1):SI4: SI61-SI5-SI61.
Shih MC, Rodrigues GS, Cuyumjian PR, et al. SPECT com [99mTc]-TRODAT-1; definição de protocolo de aquisição com marcador de transportador dopaminérgico. Rev Imagem. 2004;26(Suplemento 1):100 [abstract].
Shih MC, Amaro E, Goulart FO, et al. Striatal functional imaging [99mTc]-TRODAT-1 SPECT and spectroscopic from magnetic resonance study to evaluate dopamine neuron density. J Nucl Med. 2005;46(Suppl 5):215. [poster].
Shih MC, Amaro Jr E, Ferraz HB, et al. Neuroimaging of the Dopamine Transporter in Parkinson´s Disease – First study using [99mTc]-TRODAT-1 and SPECT in Brazil. Arq Neuropsiquiatr (in press).
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.