Beckwith-Wiedemann syndrome and isolated hemihyperplasia

Authors

  • Marcus Vinícius de Matos Gomes Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo
  • Ester Silveira Ramos Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo

Keywords:

Beckwith-Wiedemann syndrome, Imprinting, Methylation, Isolated hemihyperplasia, Cancer

Abstract

CONTEXT: Beckwith-Wiedemann syndrome is a complex and heterogeneous overgrowth syndrome with genetic and epigenetic alterations, involving genomic imprinting and cancer predisposition. Isolated hemihyperplasia is of unknown cause, and it may represent a partial or incomplete expression of Beckwith-Wiedemann syndrome. OBJECTIVES: A clinical and molecular review and proposal of the use of an experimental protocol to provide a practical approach for the physician. DATA SYNTHESIS: This review demonstrates the genetic and epigenetic mechanisms involved in the Beckwith-Wiedemann syndrome and isolated hemihyperplasia, and the candidate genes. To our knowledge, this is the first Brazilian protocol for research into these disorders. The results have been used at the Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, to elucidate the basis of Beckwith-Wiedemann syndrome and isolated hemihyperplasia, and have been applied at the Hospital Universitário of the Faculdade de Medicina. CONCLUSIONS: Elucidation of the etiological mechanisms and use of a laboratory protocol to detect alterations in these disorders may be useful for guiding the management of such patients and genetic counseling of the families.

Downloads

Download data is not yet available.

Author Biographies

Marcus Vinícius de Matos Gomes, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo

MSc student, Department of Genetics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.

Ester Silveira Ramos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo

MD, PhD. Department of Genetics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil and Department of Obstetrics and Gynecology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.

References

Wiedemann HR. Complexe malformatif familial avec hernie ombilicale et macroglossie - un ‘syndrome nouveau’? J Genet Hum 1964;13:223-32.

Beckwith JB. Macroglossia, omphalocele, adrenal cytomegaly, gigantism and hyperplastic visceromegaly. Birth Defects Orig Art Ser 1969;2:188-96.

Li M, Squire JA, Weksberg R. Overgrowth syndromes and ge- nomic imprinting: from mouse to man. Clin Genet 1998;53(3):165-70.

Mannens M, Alders M, Redeker B, et al. Positional cloning of genes involved in the Beckwith-Wiedemann syndrome, hemi- hypertrophy, and associated childhood tumors. Med Pediatr Oncol 1996;27(5):490-4.

Elliot M, Bayly R, Cole T, Temple IK, Maher ER. Clinical fea- tures and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clin Genet 1994; 46 (2): 168-74.

Martínez y Martínez R. Clinical features in the Wiedemann- Beckwith syndrome. Clin Genet 1996;50(4):272-4.

Sippell WG, Partsch CJ, Wiedemann HR. Growth, bone matu- ration and pubertal development in children with the EMG- syndrome. Clin Genet 1989;35(1):20-8.

Irving IM. Exomphalos with macroglossia: a study of eleven cases. J Pediat Surg 1967;2(6):499-507.

Wiedemann HR. Tumours and hemihypertrophy associated with Wiedemann-Beckwith syndrome. Euro J Pediat 1983;141:129.

Martínez y Martínez R, Martínez-Carboney R, Ocampo- Campos R, et al. Wiedemann-Beckwith syndrome: clinical, cy- togenetical and radiological observations in 39 new cases. Genet Couns 1992;3(2):67-76.

Sotelo-Avila C, Gonzalez-Crussi F, Fowler JW. Complete and incomplete forms of Beckwith-Wiedemann syndrome: their oncogenic potential. J Pediat 1980;96(1):47-50.

Schneid H, Vazquez MP, Vacher C, Gourmelen M, Cabrol S, Le Bouc Y. The Beckwith-Wiedemann syndrome phenotype and the risk of cancer. Med Pediat Oncol 1997;28(6):411-5.

Weksberg R, Nishikawa J, Caluseriu O, et al. Tumor develop- ment in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations includ- ing imprinting defects of KCNQ1OT1. Hum Mol Genet 2001;10(26)2989-3000.

Cohen MM. A comprehensive and critical assessment of overgrowth and overgrowth syndromes. Adv Hum Genet 1989;18:181-303,373-6.

Rowe NH. Hemifacial hypertrophy: review of the literature and addition of four cases. Oral Surg 1962;15:572-6.

Tomooka Y, Onitsuka H, Goya T, et al. Congenital hemihypertrophy with adrenal adenoma and medullary sponge kidney. Br J Radiol 1988;61(729):851-3.

Hoyme HE, Seaver LH, Jones KL, et al. Isolated hemihyperplasia (hemihypertrophy): Report of a prospective multicenter study of the incidence of neoplasia and review. Am J Med Genet 1998;79(4):274-8.

Leisenring WM, Breslow NE, Evans IE, et al. Increased birth weights of National Wilms’ Tumor Study patients suggest a growth factor excess. Cancer Res 1994;54(17):4680-3.

Reik W, Davies K, Dean W, Kelsey G, Constância M. Imprinted genes and the coordination of fetal and postnatal growth in mam- mals. Novartis Found Symp 2001;237:19-31; discussion 31-42.

Engel E, DeLozier-Blanchet CD. Uniparental disomy, isodisomy, and imprinting: probable effects in man and strate- gies for their detection. Am J Med Genet 1991;40(4):432-9.

Reik W, Maher ER. Imprinting in clusters: lessons from Beckwith- Wiedemann syndrome. Trends Genet 1997;13(8):330-4.

Maher ER, Reik W. Beckwith-Wiedemann syndrome: imprint- ing in cluster revisited. J Clin Invest 2000;105(3):247-52.

Engel JR, Smallwood A, Harper A, et al. Epigenotype-pheno- type correlations in Beckwith-Wiedemann syndrome. J Med Genet 2000;37(12):921-6.

Brown KW, Villar AJ, Bickmore W, et al. Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway. Hum Mol Genet 1996;5(12):2027-32.

Weksberg R, Teshima I, Williams BR, et al. Molecular charac- terization of cytogenetic alterations associated with the Beckwith-Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Hum Mol Genet 1993;2(5):549-56.

Li M, Squire JA, Weksberg R. Molecular genetics of Wiedemann- Beckwith syndrome. Am J Med Genet 1998;79(4):253-9.

Hashimoto K, Azuma C, Koyama M, et al. Loss of imprinting in choriocarcinoma. Nat Genet 1995;9(2):109-10.

Ogawa O, Becroft DM, Morison IM, et al. Constitutional relaxa- tion of insulin-like growth factor II gene imprinting associated with Wilms’ tumour and gigantism. Nat Genet 1993;5(4):408-12.

Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B. Tumour suppressor activity of H19 RNA. Nature 1993;365(6448):764-7.

Matsuoka S, Edwards MC, Bai C, et al. p57 KIP2 , a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a can- didate tumor suppressor gene. Genes Dev 1995;9(6):650-62.

Lee MP, DeBaun MR, Mitsuya K, et al. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KvLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin like growth factor II imprinting. Proc Natl Acad Sci USA 1999;96(9):5203-8.

Smilinich NJ, Day CD, Fitzpatrick GV, et al. A maternally meth- ylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith- Wiedemann syndrome. Proc Natl Acad Sci USA 1999;96(14):8064-9.

Barlow DP. Competition - a common motif for the imprinting mechanism? EMBO J 1997;16(23):6899-905.

Webber AL, Ingram RS, Levorse JM, Tilghman SM. Location of enhancers is essential for the imprinting of H19 and Igf2 genes. Nature 1998;391(6668):711-5.

Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM. CTCF mediates methylation-sensitive en- hancer-blocking activity at the H19/Igf2 locus. Nature 2000;405(6785):486-9.

Kanduri C, Pant V, Loukinov D, et al. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol 2000;10(14):853-6.

Thorvaldsen JL, Duran KL, Bartolomei MS. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev 1998;12(23):3693-702.

Srivastava M, Hsieh S, Grinberg A, Williams-Simons L, Huang SP, Pfeifer K. H19 and Igf2 monoallelic expression is regulated in two distinct ways by a shared cis acting regulatory region upstream of H19. Genes Dev 2000;14(10):1186-95.

Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tu- mour. Nat Genet 1994;7(3):433-9.

Reik W, Brown KW, Schneid H, Le Bouc Y, Bickmore W, Maher ER. Imprinting mutations in the Beckwith-Wiedemann syn- drome suggested by altered imprinting pattern in the IGF2- H19 domain. Hum Mol Genet 1995;4(12):2379-85.

Feinberg AP. Cancer epigenetics takes center stage. Proc Natl Acad Sci USA 2001;98(2):392-4.

Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Na- ture 2000;405(6785):482-5.

Sun FL, Dean WL, Kelsey G, Allen NA, Reik W. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature 1997;389(6653):809-15.

Lee MP, Hu RJ, Johnson LA, Feinberg AP. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nat Genet 1997;15(2):181-5.

Lee MP, DeBaun M, Randhawa G, et al. Low frequency of p57 KIP2 mutation in Beckwith-Wiedemann. Am J Hum Genet 1997;61(2):304-9.

Lam WW, Hatada I, Ohishi S, et al. Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel geno- type-phenotype correlation. J Med Genet 1999;36(7)518-23.

Henry I, Bonaiti-Pellié C, Chehensse V, et al. Uniparental pa- ternal disomy in a genetic cancer-predisposing syndrome. Na- ture 1991;351(6328):665-7.

DeBaun MR, Niemitz EL, McNeil DE, et al. Epigenetic altera- tions of H19 and LIT1 distinguish patients with Beckwith- Wiedemann syndrome with cancer and birth defects. Am J Hum Genet 2002;70(3):604-11.

Falls JG, Pulford DJ, Wylie AA, Jirtle RL. Genomic imprint- ing: implications for human disease. Am J Pathol 1999;154(3)635-47.

Moulton T, Chung WY, Yuan L, et al. Genomic imprinting and Wilms’ tumor. Med Pediatr Oncol 1996;27(5):476-83.

Ogawa O, Eccles MR, Szeto J, et al. Relaxation of insulin-like growth factor II gene imprinting in Wilms’ tumour. Nature 1993;362(6422):749-51.

Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP. Relaxation of imprinted genes in human cancer. Nature 1993;362(6422):747-9.

Tycko B. Epigenetic gene silencing in cancer. J Clin Invest 2000;105(4):401-7.

Elliott M, Bayly R, Cole T, Temple IK, Maher ER. Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clin Genet 1994;46(2):168-74.

DeBaun MR, Tucker MA. Risk of cancer during the first four years of life in children form The Beckwith-Wiedemann Syn- drome Registry. J Pediatr 1998;132(3 Pt 1):398-400.

Everman DB, Shuman C, Dzolganovski B, O’riordan MA, Weksberg R, Robin NH. Serum alpha-fetoprotein levels in Beckwith-Wiedemann syndrome. J Pediatr 2000;137(1):123-7.

Borer JG, Kaefer M, Barnewolt CE, et al. Renal findings on radiological followup of patients with Beckwith-Wiedemann syndrome. J Urol 1999;16(1):235-9.

Choyke PL, Siegel MJ, Craft AW, Green DM, DeBaun MR. Screening for Wilms tumor in children with Beckwith- Wiedemann syndrome or idiopathic hemihypertrophy. Med Pediatr Oncol 1999;32(3):196-200.

McNeil DE, Brown M, Ching A, DeBaun MR. Screening for Wilms tumor and hepatoblastoma in children with Beckwith- Wiedemann syndromes: a cost-effective model. Med Pediatr Oncol 2001;37(4):349-56.

Moorhead PS, Norwell PC, Meliman WJ, Battips DM, Hungerford DA. Chromosome preparations of leukocyte cultures from hu- man peripheral blood. Exp Cell Res 1960;20:654-6.

Scheres JM. Human chromosome banding. Lancet 1972;1(7755):849.

Downloads

Published

2003-05-05

How to Cite

1.
Gomes MV de M, Ramos ES. Beckwith-Wiedemann syndrome and isolated hemihyperplasia. Sao Paulo Med J [Internet]. 2003 May 5 [cited 2025 Mar. 14];121(3):133-8. Available from: https://periodicosapm.emnuvens.com.br/spmj/article/view/2607

Issue

Section

Review Article