Beckwith-Wiedemann syndrome and isolated hemihyperplasia
Palavras-chave:
Síndrome de Beckwith-Wiedemann, Imprinting, Metilação, Hemihiperplasia isolada, CâncerResumo
CONTEXTO: A síndrome de Beckwith-Wiedemann é uma doença de hipercrescimento complexa e heterogênea com alterações genéticas e epigenéticas, envolvendo imprinting genômico e predisposição ao câncer. A causa da hemi-hiperplasia isolada ainda é desconhecida e pode representar uma expressão parcial ou incompleta da síndrome de Beckwith-Wiedemann. OBJETIVOS: Revisão clínica e molecular e proposta de um protocolo experimental para utilização na prática médica. SÍNTESE DOS DADOS: Esta revisão apresenta os mecanismos genéticos e epigenéticos envolvidos na síndrome de Beckwith-Wiedemann e na hemi-hiperplasia isolada, os genes candidatos e o primeiro protocolo brasileiro, de que temos conhecimento, para a pesquisa dessas doenças. Os resultados têm sido utilizados na Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para elucidar as bases da síndrome de Beckwith-Wiedemann/hemi-hiperplasia isolada e aplicados no Hospital das Clínicas desta Faculdade. CONCLUSÕES: A elucidação dos mecanismos etiológicos e o uso de um protocolo laboratorial para se detectar as alterações nessas doenças pode ser proveitoso no acompanhamento clínico dos pacientes e no aconselhamento genético das famílias.
Downloads
Referências
Wiedemann HR. Complexe malformatif familial avec hernie ombilicale et macroglossie - un ‘syndrome nouveau’? J Genet Hum 1964;13:223-32.
Beckwith JB. Macroglossia, omphalocele, adrenal cytomegaly, gigantism and hyperplastic visceromegaly. Birth Defects Orig Art Ser 1969;2:188-96.
Li M, Squire JA, Weksberg R. Overgrowth syndromes and ge- nomic imprinting: from mouse to man. Clin Genet 1998;53(3):165-70.
Mannens M, Alders M, Redeker B, et al. Positional cloning of genes involved in the Beckwith-Wiedemann syndrome, hemi- hypertrophy, and associated childhood tumors. Med Pediatr Oncol 1996;27(5):490-4.
Elliot M, Bayly R, Cole T, Temple IK, Maher ER. Clinical fea- tures and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clin Genet 1994; 46 (2): 168-74.
Martínez y Martínez R. Clinical features in the Wiedemann- Beckwith syndrome. Clin Genet 1996;50(4):272-4.
Sippell WG, Partsch CJ, Wiedemann HR. Growth, bone matu- ration and pubertal development in children with the EMG- syndrome. Clin Genet 1989;35(1):20-8.
Irving IM. Exomphalos with macroglossia: a study of eleven cases. J Pediat Surg 1967;2(6):499-507.
Wiedemann HR. Tumours and hemihypertrophy associated with Wiedemann-Beckwith syndrome. Euro J Pediat 1983;141:129.
Martínez y Martínez R, Martínez-Carboney R, Ocampo- Campos R, et al. Wiedemann-Beckwith syndrome: clinical, cy- togenetical and radiological observations in 39 new cases. Genet Couns 1992;3(2):67-76.
Sotelo-Avila C, Gonzalez-Crussi F, Fowler JW. Complete and incomplete forms of Beckwith-Wiedemann syndrome: their oncogenic potential. J Pediat 1980;96(1):47-50.
Schneid H, Vazquez MP, Vacher C, Gourmelen M, Cabrol S, Le Bouc Y. The Beckwith-Wiedemann syndrome phenotype and the risk of cancer. Med Pediat Oncol 1997;28(6):411-5.
Weksberg R, Nishikawa J, Caluseriu O, et al. Tumor develop- ment in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations includ- ing imprinting defects of KCNQ1OT1. Hum Mol Genet 2001;10(26)2989-3000.
Cohen MM. A comprehensive and critical assessment of overgrowth and overgrowth syndromes. Adv Hum Genet 1989;18:181-303,373-6.
Rowe NH. Hemifacial hypertrophy: review of the literature and addition of four cases. Oral Surg 1962;15:572-6.
Tomooka Y, Onitsuka H, Goya T, et al. Congenital hemihypertrophy with adrenal adenoma and medullary sponge kidney. Br J Radiol 1988;61(729):851-3.
Hoyme HE, Seaver LH, Jones KL, et al. Isolated hemihyperplasia (hemihypertrophy): Report of a prospective multicenter study of the incidence of neoplasia and review. Am J Med Genet 1998;79(4):274-8.
Leisenring WM, Breslow NE, Evans IE, et al. Increased birth weights of National Wilms’ Tumor Study patients suggest a growth factor excess. Cancer Res 1994;54(17):4680-3.
Reik W, Davies K, Dean W, Kelsey G, Constância M. Imprinted genes and the coordination of fetal and postnatal growth in mam- mals. Novartis Found Symp 2001;237:19-31; discussion 31-42.
Engel E, DeLozier-Blanchet CD. Uniparental disomy, isodisomy, and imprinting: probable effects in man and strate- gies for their detection. Am J Med Genet 1991;40(4):432-9.
Reik W, Maher ER. Imprinting in clusters: lessons from Beckwith- Wiedemann syndrome. Trends Genet 1997;13(8):330-4.
Maher ER, Reik W. Beckwith-Wiedemann syndrome: imprint- ing in cluster revisited. J Clin Invest 2000;105(3):247-52.
Engel JR, Smallwood A, Harper A, et al. Epigenotype-pheno- type correlations in Beckwith-Wiedemann syndrome. J Med Genet 2000;37(12):921-6.
Brown KW, Villar AJ, Bickmore W, et al. Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway. Hum Mol Genet 1996;5(12):2027-32.
Weksberg R, Teshima I, Williams BR, et al. Molecular charac- terization of cytogenetic alterations associated with the Beckwith-Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Hum Mol Genet 1993;2(5):549-56.
Li M, Squire JA, Weksberg R. Molecular genetics of Wiedemann- Beckwith syndrome. Am J Med Genet 1998;79(4):253-9.
Hashimoto K, Azuma C, Koyama M, et al. Loss of imprinting in choriocarcinoma. Nat Genet 1995;9(2):109-10.
Ogawa O, Becroft DM, Morison IM, et al. Constitutional relaxa- tion of insulin-like growth factor II gene imprinting associated with Wilms’ tumour and gigantism. Nat Genet 1993;5(4):408-12.
Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B. Tumour suppressor activity of H19 RNA. Nature 1993;365(6448):764-7.
Matsuoka S, Edwards MC, Bai C, et al. p57 KIP2 , a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a can- didate tumor suppressor gene. Genes Dev 1995;9(6):650-62.
Lee MP, DeBaun MR, Mitsuya K, et al. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KvLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin like growth factor II imprinting. Proc Natl Acad Sci USA 1999;96(9):5203-8.
Smilinich NJ, Day CD, Fitzpatrick GV, et al. A maternally meth- ylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith- Wiedemann syndrome. Proc Natl Acad Sci USA 1999;96(14):8064-9.
Barlow DP. Competition - a common motif for the imprinting mechanism? EMBO J 1997;16(23):6899-905.
Webber AL, Ingram RS, Levorse JM, Tilghman SM. Location of enhancers is essential for the imprinting of H19 and Igf2 genes. Nature 1998;391(6668):711-5.
Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM. CTCF mediates methylation-sensitive en- hancer-blocking activity at the H19/Igf2 locus. Nature 2000;405(6785):486-9.
Kanduri C, Pant V, Loukinov D, et al. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol 2000;10(14):853-6.
Thorvaldsen JL, Duran KL, Bartolomei MS. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev 1998;12(23):3693-702.
Srivastava M, Hsieh S, Grinberg A, Williams-Simons L, Huang SP, Pfeifer K. H19 and Igf2 monoallelic expression is regulated in two distinct ways by a shared cis acting regulatory region upstream of H19. Genes Dev 2000;14(10):1186-95.
Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tu- mour. Nat Genet 1994;7(3):433-9.
Reik W, Brown KW, Schneid H, Le Bouc Y, Bickmore W, Maher ER. Imprinting mutations in the Beckwith-Wiedemann syn- drome suggested by altered imprinting pattern in the IGF2- H19 domain. Hum Mol Genet 1995;4(12):2379-85.
Feinberg AP. Cancer epigenetics takes center stage. Proc Natl Acad Sci USA 2001;98(2):392-4.
Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Na- ture 2000;405(6785):482-5.
Sun FL, Dean WL, Kelsey G, Allen NA, Reik W. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature 1997;389(6653):809-15.
Lee MP, Hu RJ, Johnson LA, Feinberg AP. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements. Nat Genet 1997;15(2):181-5.
Lee MP, DeBaun M, Randhawa G, et al. Low frequency of p57 KIP2 mutation in Beckwith-Wiedemann. Am J Hum Genet 1997;61(2):304-9.
Lam WW, Hatada I, Ohishi S, et al. Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel geno- type-phenotype correlation. J Med Genet 1999;36(7)518-23.
Henry I, Bonaiti-Pellié C, Chehensse V, et al. Uniparental pa- ternal disomy in a genetic cancer-predisposing syndrome. Na- ture 1991;351(6328):665-7.
DeBaun MR, Niemitz EL, McNeil DE, et al. Epigenetic altera- tions of H19 and LIT1 distinguish patients with Beckwith- Wiedemann syndrome with cancer and birth defects. Am J Hum Genet 2002;70(3):604-11.
Falls JG, Pulford DJ, Wylie AA, Jirtle RL. Genomic imprint- ing: implications for human disease. Am J Pathol 1999;154(3)635-47.
Moulton T, Chung WY, Yuan L, et al. Genomic imprinting and Wilms’ tumor. Med Pediatr Oncol 1996;27(5):476-83.
Ogawa O, Eccles MR, Szeto J, et al. Relaxation of insulin-like growth factor II gene imprinting in Wilms’ tumour. Nature 1993;362(6422):749-51.
Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP. Relaxation of imprinted genes in human cancer. Nature 1993;362(6422):747-9.
Tycko B. Epigenetic gene silencing in cancer. J Clin Invest 2000;105(4):401-7.
Elliott M, Bayly R, Cole T, Temple IK, Maher ER. Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clin Genet 1994;46(2):168-74.
DeBaun MR, Tucker MA. Risk of cancer during the first four years of life in children form The Beckwith-Wiedemann Syn- drome Registry. J Pediatr 1998;132(3 Pt 1):398-400.
Everman DB, Shuman C, Dzolganovski B, O’riordan MA, Weksberg R, Robin NH. Serum alpha-fetoprotein levels in Beckwith-Wiedemann syndrome. J Pediatr 2000;137(1):123-7.
Borer JG, Kaefer M, Barnewolt CE, et al. Renal findings on radiological followup of patients with Beckwith-Wiedemann syndrome. J Urol 1999;16(1):235-9.
Choyke PL, Siegel MJ, Craft AW, Green DM, DeBaun MR. Screening for Wilms tumor in children with Beckwith- Wiedemann syndrome or idiopathic hemihypertrophy. Med Pediatr Oncol 1999;32(3):196-200.
McNeil DE, Brown M, Ching A, DeBaun MR. Screening for Wilms tumor and hepatoblastoma in children with Beckwith- Wiedemann syndromes: a cost-effective model. Med Pediatr Oncol 2001;37(4):349-56.
Moorhead PS, Norwell PC, Meliman WJ, Battips DM, Hungerford DA. Chromosome preparations of leukocyte cultures from hu- man peripheral blood. Exp Cell Res 1960;20:654-6.
Scheres JM. Human chromosome banding. Lancet 1972;1(7755):849.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.