Enzymes and membrane proteins of ADSOL-preserved red blood cells
Keywords:
Red cell ageing, Red cell membrane proteins, Red cell enzymes, Red cell preservation, ADSOLAbstract
CONTEXT: The preservative solution ADSOL (adenine, dextrose, sorbitol, sodium chloride and mannitol) maintains red cell viability for blood trans-fusion for 6 weeks. It would be useful to know about its preservation qualities over longer periods. OBJECTIVE: To determine some red cell biochemical parameters for peri-ods of up to 14 weeks in order to determine whether the red cell metabo-lism integrity would justify further studies aiming at increasing red cell preservation and viability. DESIGN: Biochemical evaluation designed to study red cell preservation. SETTING: São Paulo University erythrocyte metabolism referral center. SAMPLE: Six normal blood donors from the University Hospital of the Universidade Federal do Paraná, Curitiba, Brazil. MAIN MEASUREMENTS: Weekly assay of erythrocyte adenosine-5´-triphosphate (ATP), 2,3-diphosphoglycerate (2,3DPG), hexokinase (HX), phosphofructokinase (PFK), pyruvate kinase (PK), glucose-6-phosphate dehydrogenase (G-6-PD), 6-phosphogluconic dehydrogenase (6-PGD), glyceraldehyde-3-phosphate dehydrogenase (GAPD), glutathione reduc-tase (GR), glutathione peroxidase (GSHPx), plasma sodium and potas-sium, blood pH, and membrane proteins of red cells preserved in ADSOL were studied during storage for 14 weeks storage. RESULTS: During ADSOL preservation, erythrocyte ATP concentration decreased 60% after 5 weeks, and 90% after 10 weeks; the pH fell from 6.8 to 6.4 by the 14th week. 2,3-DPG concentration was stable during the first week, but fell 90% after 3 weeks and was exhausted after 5 weeks. By the end of the 5th week, an activity decrease of 16-30% for Hx, GAPD, GR, G-6-PD and 6-PGD, 35% for PFK and GSHPx, and 45% for PK were observed. Thereafter, a uniform 10% decay was observed for all enzymes up to the 14th week. The red blood cell membrane pro-teins did not show significant alterations in polyacrylamide gel electro-phoresis (SDS-PAGE) during the 14 weeks. CONCLUSION: Although the blood viability was shown to be poor from the 6th week up to the 14th week of storage due to ATP and 2,3-DPG depletion, the other biochemical parameters remained in fairly good condition for longer storage. As there is a gradual and uniform decay in activity throughout these 14 weeks, it seems that ADSOL-preserved red cells may be used as red cell enzyme standards and membrane proteins as well.
Downloads
References
Högman CF, Hedlund K, Zetterstorm H. Clinical use fullness of red cells preserved in protein-poor medium. N Engl J Med 1978;299:1377-82.
Heaton A, Miripol J, Grapka B, Dehart D, Seeger C, Rzad L, Aster R. Improved storage of high hematocrit cell concentrates using a mannitol, adenine, saline, glucose solution. Transfusion 1981;21:600-1.
Högman CF, Akerblom O, Hedlund K, Rosén I, Wiklund, L. Red cell suspensions in SAGM medium. Vox Sang 1983;45:217-23.
Strauss D. CDS-AG medium for red blood cell preservation. Biomed Biochim Acta 1983;42:332-6.
Dawson RB, Fagan DS, Meyer DR. Dihydroxyacetone, pyruvate, and phosphate effects on 2,3-DPG and ATP in citrate-phosphate-dextrose-adenine blood preservation. Transfusion 1984;24:327-9.
Meryman HT, Hornblower MLS, Syring RL. Prolonged storage of red cells at 4°C. Transfusion 1986;26:500-5.
Carmen RA, Sohmer PR, Leng BS, et al. Five-week red cell storage with preservation of 2,3-DPG. Transfusion 1988;28:175-161
Heaton A, Miripol J, Aster R, et al. Use of ADSOL preservation solution for prolonged storage of low viscosity AS-1 RBC. Br J Haematol 1984;57:467-78.
Greenwalt TJ, Sostok, CZ, Dumaswala UJ. Studies in red blood cell preservation. Comparison of vesicle formation, morphology, and membrane lipids during storage in AS-1 and CPDA-1. Vox Sang 1990;58:90-3.
Beutler E. Red cell metabolism: a manual of biochemical methods. Orlando: Grune & Stratton; 1984.
Dodge JT, Mitchell C, Hanahan DJ. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 1963;100:119-30.
Lowry OH, Rosenbrough NJ, Farr L, Randall RJ. Protein measurements with the Folin phenol reagent. J Biol Chem 1951; 193:265-75.
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680-85.
Fagiolo E, Mores N, Pelliccetti A, Gozzo ML, Zuppi C, Littarru GP. Biochemical parameters to access viability of blood storage for transfusional use. Folia Haematol 1986;113:783-9.
Noble NA, Tanaka KR, Myrhe BA, Johnson DE. Red cell enzyme activities during blood storage and reactivation of phosphofructokinase. Am J Hematol 1982;13:1-8.
Barretto OCO, Nonoyama K, Sawatani E, Tanaka K, Okumura Y, Jamra MA. Viablidade de sangue conservado em recipientes de várias procedências. Rev Ass Med Bras 1983;29:102-5.
Mourad N. Effect of prolonged storage on erythrocyte enzymes. Transfusion 1969;9:141-2.
Nakao M, Nakayama T, Decrease in phosphofructokinase activity during blood preservation and the effect of intracellular ATP. Biochem Biophys Res Commun 1980;95:1294-8.
Wolfe LC, Byrne AM, Lux SE. Molecular defect in the membrane skeleton of blood bank-stored red cells. J Clin Invest 1986;78:1681-6.
Kadlubowski M. The effect of in vivo aging of the human erythrocytes on the proteins of the plasma membrane: a comparision with metabolic depletion and blood bank storage. J Biochem 1978;9:79-8.
Schrier SL, Sohmer PR, Moore GL, Junga I. Red blood cell membrane abnormalities during storage. Transfusion 1982;22:261-5.
Halbhuber KJ, Feuerstein H, Stibenz D, Linss W. Membrane alteration during banking of red blood cells. Biomed Biochim Acta 1983;42:337-41.
Wegner G, Kucera W, Lerche D. Deformability characterization of erythrocytes stored under different resuspension media. Folia Haematol 1987;114:474-7.