Enzymes and membrane proteins of ADSOL-preserved red blood cells
Palavras-chave:
Red cell ageing, Red cell membrane proteins, Red cell enzymes, Red cell preservation, ADSOLResumo
CONTEXTO: A solução preservadora ADSOL (adenina, dextrose, sorbitol, cloreto de sódio e manitol) mantém a viabilidade dos glóbulos vermelhos para transfusão durante seis semanas. Seria assim útil determinar sua preservação por tempos maiores. OBJETIVO: Determinar alguns parâmetros bioquímicos eritrocitários até 14 semanas visando saber se a integridade do metabolismo eritrocitário justificaria estudos posteriores com o propósito de alongar sua preservação e viabilidade. TIPO DE ESTUDO: Avaliação bioquímica para avaliar a preservação de hemácias. LOCAL: Centro de referência de metabolismo eritrocitário da Faculdade de Medicina da USP, São Paulo e Universidade Federal do Paraná, Curitiba. AMOSTRA: Seis doadores de sangue do hospital universitário da Universidade Federal do Paraná, Curitiba, Brasil. VARIÁVEIS ESTUDADAS: Foi realizada a determinação semanal de adenosina-5´-trifosfato, 2,3-difosfoglicerato, hexoquinase, fosfofrutoquinase, piruvato quinase, glicose-6-fosfato desidrogenase, 6-fosfogliconico desidrogenase, gliceraldeido-3-fosfato desi-drogenase, glutationa redutase, glutationa peroxidase, bem como a dosagem de sódio e potássio plasmáticos, pH sangüíneo, e a determinação das proteínas da membrana eritrocitária por eletroforese em gel de poliacrilamida. RESULTADOS: Durante a preservação o ATP caiu 60% em cinco semanas, e 90% depois de 10 semanas. O 2,3-DPG permaneceu estável durante a primeira semana, caiu 90% depois de três semanas e se exauriu depois de cinco semanas. O pH decresceu de 6,8 na primeira semana a 6,4 na 14a semana. Depois de cinco semanas houve diminuição de 16 a 31% das atividades da hexoquinase, gliceraldeído-3-fosfato desidrogenase, glutationa redutase, e 45% da piruvato quinase. Em seguida, observou-se um decréscimo de 10% para todas enzimas até a 14a semana. A eletroforese em gel de poliacrilamida das proteínas da membrana eritrocitária não revelou alterações nas concentrações relativas das bandas durante e ao cabo das 14 semanas. CONCLUSÕES: Embora a viabilidade do sangue seja pobre da 6a à 14a semana, devido à depleção de ATP e de 2,3-DPG, os demais parâmetros bioquímicos decaíram gradualmente. Este achado pode sugerir que os glóbulos vermelhos preservados em ADSOL possam ser utilizados como padrões de enzimas eritrocitárias e de proteínas da membrana.
Downloads
Referências
Högman CF, Hedlund K, Zetterstorm H. Clinical use fullness of red cells preserved in protein-poor medium. N Engl J Med 1978;299:1377-82.
Heaton A, Miripol J, Grapka B, Dehart D, Seeger C, Rzad L, Aster R. Improved storage of high hematocrit cell concentrates using a mannitol, adenine, saline, glucose solution. Transfusion 1981;21:600-1.
Högman CF, Akerblom O, Hedlund K, Rosén I, Wiklund, L. Red cell suspensions in SAGM medium. Vox Sang 1983;45:217-23.
Strauss D. CDS-AG medium for red blood cell preservation. Biomed Biochim Acta 1983;42:332-6.
Dawson RB, Fagan DS, Meyer DR. Dihydroxyacetone, pyruvate, and phosphate effects on 2,3-DPG and ATP in citrate-phosphate-dextrose-adenine blood preservation. Transfusion 1984;24:327-9.
Meryman HT, Hornblower MLS, Syring RL. Prolonged storage of red cells at 4°C. Transfusion 1986;26:500-5.
Carmen RA, Sohmer PR, Leng BS, et al. Five-week red cell storage with preservation of 2,3-DPG. Transfusion 1988;28:175-161
Heaton A, Miripol J, Aster R, et al. Use of ADSOL preservation solution for prolonged storage of low viscosity AS-1 RBC. Br J Haematol 1984;57:467-78.
Greenwalt TJ, Sostok, CZ, Dumaswala UJ. Studies in red blood cell preservation. Comparison of vesicle formation, morphology, and membrane lipids during storage in AS-1 and CPDA-1. Vox Sang 1990;58:90-3.
Beutler E. Red cell metabolism: a manual of biochemical methods. Orlando: Grune & Stratton; 1984.
Dodge JT, Mitchell C, Hanahan DJ. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 1963;100:119-30.
Lowry OH, Rosenbrough NJ, Farr L, Randall RJ. Protein measurements with the Folin phenol reagent. J Biol Chem 1951; 193:265-75.
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680-85.
Fagiolo E, Mores N, Pelliccetti A, Gozzo ML, Zuppi C, Littarru GP. Biochemical parameters to access viability of blood storage for transfusional use. Folia Haematol 1986;113:783-9.
Noble NA, Tanaka KR, Myrhe BA, Johnson DE. Red cell enzyme activities during blood storage and reactivation of phosphofructokinase. Am J Hematol 1982;13:1-8.
Barretto OCO, Nonoyama K, Sawatani E, Tanaka K, Okumura Y, Jamra MA. Viablidade de sangue conservado em recipientes de várias procedências. Rev Ass Med Bras 1983;29:102-5.
Mourad N. Effect of prolonged storage on erythrocyte enzymes. Transfusion 1969;9:141-2.
Nakao M, Nakayama T, Decrease in phosphofructokinase activity during blood preservation and the effect of intracellular ATP. Biochem Biophys Res Commun 1980;95:1294-8.
Wolfe LC, Byrne AM, Lux SE. Molecular defect in the membrane skeleton of blood bank-stored red cells. J Clin Invest 1986;78:1681-6.
Kadlubowski M. The effect of in vivo aging of the human erythrocytes on the proteins of the plasma membrane: a comparision with metabolic depletion and blood bank storage. J Biochem 1978;9:79-8.
Schrier SL, Sohmer PR, Moore GL, Junga I. Red blood cell membrane abnormalities during storage. Transfusion 1982;22:261-5.
Halbhuber KJ, Feuerstein H, Stibenz D, Linss W. Membrane alteration during banking of red blood cells. Biomed Biochim Acta 1983;42:337-41.
Wegner G, Kucera W, Lerche D. Deformability characterization of erythrocytes stored under different resuspension media. Folia Haematol 1987;114:474-7.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.