Association between bone mineral density and content and physical growth parameters among children and adolescents diagnosed with HIV

a cross-sectional study

Authors

Keywords:

Body composition, HIV, Lifestyle, Growth, Health

Abstract

BACKGROUND: During childhood and adolescence, there are significant increases in bone mineral content (BMC) and bone mineral density (BMD). OBJECTIVE: To investigate physical growth parameters associated with BMD and BMC among children and adolescents diagnosed with human immunodeficiency virus (HIV). DESIGN AND SETTING: Cross-sectional study conducted in Florianópolis, Brazil, among 63 children and adolescents (aged 8-15 years) diagnosed with HIV. METHOD: BMD, BMC and fat percentage z score were evaluated using dual X-ray absorptiometry. Age/height z score and body mass index (BMI)/age z score were obtained in accordance with international recommendations, and bone age was obtained through hand-wrist radiography. Sex, family income, information on HIV infection (T CD4+ lymphocyte count, viral load and type of antiretroviral therapy, moderate-vigorous physical activity and sedentary behavior) were used as adjustment variables in the analyses. Simple and multiple linear regression analyses were performed, with a significance level of P ≤ 0.05. RESULTS: Subtotal BMD (without the head region) was directly associated with bone age, BMI/age z score and fat percentage z score, even after adjusting for covariates. Subtotal BMC/height was directly associated with bone age, height/age z score, BMI/age z score and fat percentage z score, even after adjusting for covariates. CONCLUSION: Subtotal BMD and subtotal BMC/height were directly associated with physical growth indicators among children and adolescents diagnosed with HIV.

Downloads

Download data is not yet available.

Author Biographies

Suellem Zanlorenci, Universidade Federal de Santa Catarina

BSc. Master’s Student in Physical Activity and Health, Núcleo de Pesquisa em Cineantropometria e Desempenho Humano (NUCIDH), Universidade Federal de Santa Catarina (UFSC), Florianópolis (SC), Brazil.

Priscila Custódio Martins, Universidade Federal de Santa Catarina

MSc. Doctoral Student, Núcleo de Pesquisa em Cineantropometria e Desempenho Humano (NUCIDH), Universidade Federal de Santa Catarina (UFSC), Florianópolis (SC), Brazil.

Carlos Alencar Souza Alves Junior, Universidade Federal de Santa Catarina

MSc. Doctoral Student, Núcleo de Pesquisa em Cineantropometria e Desempenho Humano (NUCIDH), Universidade Federal de Santa Catarina (UFSC), Florianópolis (SC), Brazil.

João Antônio Chula de Castro, Universidade Federal de Santa Catarina

MSc. Doctoral Student, Núcleo de Pesquisa em Cineantropometria e Desempenho Humano (NUCIDH), Universidade Federal de Santa Catarina (UFSC), Florianópolis (SC), Brazil.

Luiz Rodrigo Augustemak de Lima, Universidade Federal de Santa Catarina

PhD. Adjunct Professor, Instituto de Educação Física e Esporte (IEFE), Universidade Federal de Alagoas (UFAL), Maceió (AL), Brazil.

Edio Luiz Petroski, Universidade Federal de Santa Catarina

PhD. Associate Professor, Department of Physical Education, Universidade Federal de Santa Catarina (UFSC), Florianópolis (SC), Brazil; and Researcher, Núcleo de Pesquisa em Cineantropometria e Desempenho Humano (NUCIDH), Universidade Federal de Santa Catarina (UFSC), Florianópolis (SC), Brazil.

Diego Augusto Santos Silva, Universidade Federal de Santa Catarina

PhD. Associate Professor, Department of Physical Education, Universidade Federal de Santa Catarina (UFSC), Florianópolis (SC), Brazil; and Researcher, Research Center in Kinanthropometry and Human Performance, Florianópolis (SC), Brazil.

References

Silva CC, Teixeira AS, Goldberg TBL. The impact of calcium ingestion on the bone mineralization in adolescents. Rev Nutr. 2004;17(3):351-9. https://doi.org/10.1590/S1415-52732004000300008.

Loures MAR, Zerbini CAF, Danowski JS, et al. Diretrizes da Sociedade Brasileira de Reumatologia para diagnóstico e tratamento da osteoporose em homens. Revista Brasileira de Reumatologia. 2017;57 Suppl 2:497-514. https://doi.org/10.1016/j.rbr.2017.06.002.

Hansen AB, Obel N, Nielsen H, Pedersen C, Gerstoft J. Bone mineral density changes in protease inhibitor-sparing vs. nucleoside reverse transcriptase inhibitor-sparing highly active antiretroviral therapy: data from a randomized trial. HIV Med. 2011;12(3):157-65. PMID: 20722752; https://doi.org/10.1111/j.1468-1293.2010.00864.x.

Szubert AJ, Musiime V, Bwakura-Dangarembizi M, et al. Pubertal development in HIV-infected African children on first-line antiretroviral therapy. AIDS. 2015;29(5):609-18. PMID: 25710288; https://doi.org/10.1097/QAD.0000000000000590.

Ellis KJ, Abrams SA, Wong WW. Body composition of a young, multiethnic female population. Am J Clin Nutr. 1997;65(3):724-31. PMID: 9062521; https://doi.org/10.1093/ajcn/65.3.724.

Schtscherbyna A, Pinheiro MF, Mendonça LM, et al. Factors associated with low bone mineral density in a Brazilian cohort of vertically HIV-infected adolescents. Int J Infect Dis. 2012;16(12):e872-8. PMID: 23031418; https://doi.org/10.1016/j.ijid.2012.07.019.

Brown TT, Chen Y, Currier JS, et al. Body composition, soluble markers of inflammation, and bone mineral density in antiretroviral therapy-naive HIV-1-infected individuals. J Acquir Immune Defic Syndr. 2013;63(3):323-30. PMID: 23591634; https://doi.org/10.1097/QAI.0b013e318295eb1d.

Greene DA, Naughton GA. Adaptive skeletal responses to mechanical loading during adolescence. Sports Med. 2006;36(9):723-32. PMID: 16937949; https://doi.org/10.2165/00007256-200636090-00001.

Jiménez B, Sainz T, Díaz L, et al. Low Bone Mineral Density in Vertically HIV-infected Children and Adolescents: Risk Factors and the Role of T-cell Activation and Senescence. Pediatr Infect Dis J. 2017;36(6):578-83. PMID: 28005690; https://doi.org/10.1097/INF.0000000000001506.

Hägg U, Taranger J. Skeletal stages of the hand and wrist as indicators of the pubertal growth spurt. Acta Odontol Scand. 1980;38(3):187-200. PMID: 6932165; https://doi.org/10.3109/00016358009004719.

Jacobson DL, Spiegelman D, Duggan C, et al. Predictors of bone mineral density in human immunodeficiency virus-1 infected children. J Pediatr Gastroenterol Nutr. 2005;41(3):339-46. PMID: 16131991; https://doi.org/10.1097/01.mpg.0000174468.75219.30.

Stagi S, Bindi G, Galluzzi F, et al. Changed bone status in human immunodeficiency virus type 1 (HIV-1) perinatally infected children is related to low serum free IGF-I. Clin Endocrinol (Oxf). 2004;61(6):692-9. PMID: 15579182; https://doi.org/10.1111/j.1365-2265.2004.02150.x.

Zamboni G, Antoniazzi F, Bertoldo F, et al. Altered bone metabolism in children infected with human immunodeficiency virus. Acta Paediatr. 2003;92(1):12-6. PMID: 12650292; https://doi.org/10.1111/j.1651-2227.2003.tb00461.x.

Gordon CM, Bachrach LK, Carpenter TO, et al. Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom. 2008;11(1):43-58. PMID: 18442752; https://doi.org/10.1016/j.jocd.2007.12.005.

Blair RC, Taylor RA. Bioestatística para ciências da saúde. Tradução de Daniel Vieira. São Paulo: Pearson; 2013.

Marfell-Jones M, Reilly T. Kinanthropometry VIII: Proceedings of the 8th International Conference of the International Society for the Advancement of Kinanthropometry (ISAK). United Kingdom: Ed. Routledge; 2005.

Augustemak de Lima LR, Petroski EL, Moreno YMF, et al. Dyslipidemia, chronic inflammation, and subclinical atherosclerosis in children and adolescents infected with HIV: The PositHIVe Health Study. PLoS One. 2018;13(1):e0190785. PMID: 29320547; https://doi.org/10.1371/journal.pone.0190785.

Greulich WW, Pyle SI. Radiographic Atlas of Skeletal Development of the Hand and Wrist. United Kingdom: Stanford University Press; Oxford University Press; 1959.

Sirard JR, Pate RR. Physical activity assessment in children and adolescents. Sports Med. 2001;31(6):439-54. PMID: 11394563; https://doi.org/10.2165/00007256-200131060-00004.

Riddoch C, Edwards D, Page A, et al. The European Youth Heart Study—cardiovascular disease risk factors in children: rationale, aims, study design, and validation of methods. J Phys Act Health. 2005;2(1):115-29. https://doi.org/10.1123/jpah.2.1.115.

Corder K, Ekelund U, Steele RM, Wareham NJ, Brage S. Assessment of physical activity in youth. J Appl Physiol (1985). 2008;105(3):977-87. PMID: 18635884; https://doi.org/10.1152/japplphysiol.00094.2008.

Andersen LB, Harro M, Sardinha LB, et al. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study). Lancet. 2006;368(9532):299-304. PMID: 16860699; https://doi.org/10.1016/S0140-6736(06)69075-2.

Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557-65. PMID: 18949660; https://doi.org/10.1080/02640410802334196.

World Health Organization. Global Recommendations on Physical Activity for Health. Geneva: WHO; 2010. Available from: https://www.who.int/publications/i/item/9789241599979 Accessed in 2022 (Jun 21).

Stephens T, Craig C, Ferris B. The Canadian Physical Activity, Fitness, and Lifestyle Approach (CPAFLA). Can J Public Health. 2003;7:39.

Victora CG, Huttly SR, Fuchs SC, Olinto MT. The role of conceptual frameworks in epidemiological analysis: a hierarchical approach. Int J Epidemiol. 1997;26(1):224-7. PMID: 9126524; https://doi.org/10.1093/ije/26.1.224.

Cohen J. Statistical Power Analysis for the Behavioral Sciences. Burlington: Elsevier Science; 2013.

Horlick M, Wang J, Pierson RN, Thornton JC. Prediction models for evaluation of total-body bone mass with dual-energy X-ray absorptiometry among children and adolescents. Pediatrics. 2004;114(3):e337-e345. PMID: 15342895; https://doi.org/10.1542/peds.2004-0301.

Amaral JLS. Análise comparativa dos métodos para determinação da maturação e idade óssea [theses]. Portugal: Instituto Superior de Ciências da Saúde EGAS Moniz; 2016. Available from: https://comum.rcaap.pt/bitstream/10400.26/17335/1/Amaral_Jo%c3%a3o_Lu%c3%ads_da_Silva.pdf Accessed in 2022 (Jun 21).

Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14(10):843-7. PMID: 12904837; https://doi.org/10.1007/s00198-003-1454-8.

Rukuni R, Gregson C, Kahari C, et al. The IMpact of Vertical HIV infection on child and Adolescent SKeletal development in Harare, Zimbabwe (IMVASK Study): a protocol for a prospective cohort study. BMJ Open. 2020;10(2):e031792. PMID: 32041852; https://doi.org/10.1136/bmjopen-2019-031792.

Jacobson DL, Lindsey JC, Gordon CM, et al. Total body and spinal bone mineral density across Tanner stage in perinatally HIV-infected and uninfected children and youth in PACTG 1045. AIDS. 2010;24(5):687-96. PMID: 20168204; https://doi.org/10.1097/QAD.0b013e328336095d.

Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol. 2007;211(1):27-35. PMID: 17226788; https://doi.org/10.1002/jcp.20959.

Bermeo S, Gunaratnam K, Duque G. Fat and bone interactions. Curr Osteoporos Rep. 2014;12(2):235-42. PMID: 24599601; https://doi.org/0.1007/s11914-014-0199-y.

Freitas P, Rosa MG, Gomes AM, et al. Central and peripheral fat body mass have a protective effect on osteopenia or osteoporosis in adults and elderly? Osteoporos Int. 2016;27(4):1659-63. PMID: 26650380; https://doi.org/10.1007/s00198-015-3414-5.

Arpadi SM, Horlick M, Thornton J, et al. Bone mineral content is lower in prepubertal HIV-infected children. J Acquir Immune Defic Syndr. 2002;29(5):450-4. PMID: 11981360; https://doi.org/10.1097/00126334-200204150-00004.

Gafni RI, Hazra R, Reynolds JC, et al. Tenofovir disoproxil fumarate and an optimized background regimen of antiretroviral agents as salvage therapy: impact on bone mineral density in HIV-infected children. Pediatrics. 2006;118(3):e711-e8. PMID: 16923923; https://doi.org/10.1542/peds.2005-2525.

Cao JJ. Effects of obesity on bone metabolism. J Orthop Surg. 2011;6:30. PMID: 21676245; https://doi.org/10.1186/1749-799X-6-30.

Downloads

Published

2022-09-01

How to Cite

1.
Zanlorenci S, Martins PC, Alves Junior CAS, Castro JAC de, Lima LRA de, Edio Luiz Petroski, Silva DAS. Association between bone mineral density and content and physical growth parameters among children and adolescents diagnosed with HIV: a cross-sectional study. Sao Paulo Med J [Internet]. 2022 Sep. 1 [cited 2025 Mar. 14];140(5):682-90. Available from: https://periodicosapm.emnuvens.com.br/spmj/article/view/1071

Issue

Section

Original Article