Prevalence of prediabetes in patients with metabolic risk
Keywords:
Glucose intolerance, Glucose tolerance test, Diabetes mellitus, Prediabetic state, HyperglycemiaAbstract
CONTEXT AND OBJECTIVE: Early diagnosis of prediabetes should be done to avoid complications relating to diabetes mellitus (DM). The aim here was to assess the prevalence of prediabetes among individuals at high risk of developing DM, and to seek variables relating to glucose intolerance (GI) among individuals with normal fasting plasma glucose (FPG). DESIGN AND SETTING: Cross-sectional study at Hospital do Servidor Público Estadual, São Paulo. METHODS: The FPG and glucose tolerance test (GTT) were analyzed, from which the subjects were divided as follows: group 1 (FPG and GTT both normal), group 2 (normal FPG but abnormal GTT), group 3 (abnormal FPG but normal GTT), and group 4 (FPG and GTT both abnormal). The subjects’ clinical, laboratory and anthropometric profile was determined. RESULTS: 138 subjects were studied: 44 in group 1, 11 in group 2, 33 in group 3 and 50 in group 4. The prevalence of prediabetes was 68.0%. Group 4 individuals were older than group 1 individuals [69.0 (55.5-74.0) versus 58.9 ± 11.8 years; P < 0.05], with greater prevalence of risk conditions for DM [5.0 (4.0-5.0) versus 4.0 (3.0-5.0); P < 0.05]. Among individuals with normal FPG, GI prevalence was 20.0%. No variables analyzed correlated with GTT. CONCLUSION: The prevalence of prediabetes was 68.0%, and 20.0% of subjects with normal FPG had GI. Although some anthropometric, clinical and laboratory variables have been correlated with DM and prediabetes, none, except for GTT, was able to screen for GI among subjects with normal FPG in the present study.
Downloads
References
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2009;32 Suppl 1:S62-7.
Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047-53.
Ruderman NB, Williamson JR, Brownlee M. Glucose and diabetic vascular disease. FASEB J. 1992;6(11):2905-14.
Sherwin RS. Diabetes mellitus. In: Goldman L, Ausiello D, editors. Cecil text book of Medicine. 22nd ed. Philadelphia: Saunders; 2004. p. 1658-92.
Valdez R, Seidell JC, Ahn YI, Weiss KM. A new index of abdominal adiposity as an indicator of risk for cardiovascular disease. A cross- population study. Int J Obes Relat Metab Disord. 1993;17(2):77-82.
Ho SY, Lam TH, Janus ED; Hong Kong Cardiovascular Risk Factor Prevalence Study Steering Committee. Waist to stature ratio is more strongly associated with cardiovascular risk factors than other simple anthropometric indices. Ann Epidemiol. 2003;13(10):683-91.
Pitanga FJG, Lessa I. Indicadores antropométricos de obesidade como instrumento de triagem para risco coronariano elevado em adultos na cidade de Salvador – Bahia [Anthropometric indexes of obesity as an instrument of screening for high coronary risk in adults in the city of Salvador—Bahia]. Arq Bras Cardiol. 2005;85(1):26-31.
Sposito AC, Caramelli B, Fonseca FAH, et al. IV Diretriz Brasileira sobre Dislipidemias e Prevenção de Aterosclerose. Departamento de Aterosclerose da Sociedade Brasileira de Cardiologia. Arq Bras Cardiol. 2007;88(supl. 1):2-19.
Rosenbaum P, Gimero SG, Sanudo A, et al. Independent impact of glycemia and blood pressure in albuminuria on high-risk subjects for metabolic syndrome. Clin Nephrol. 2004;61(6):369-76.
Torquato MT, Montenegro Júnior RM, Viana LA, et al. Prevalence of diabetes mellitus and impaired glucose tolerance in the urban population aged 30-69 years in Ribeirão Preto (São Paulo), Brazil. Sao Paulo Med J. 2003;121(6):224-30.
Gimero SG, Ferreira SR, Franco LJ, Iunes M. Comparison of glucose tolerance categories according to World Health Organization and American Diabetes Association diagnostic criteria in a population- based study in Brazil. The Japanese-Brazilian Diabetes Study Group. Diabetes Care. 1998;21(11):1889-92.
Jelliffe DB. Evaluación del estado nutrición de la comunidad (con especial referencias a las encuestas em las regiones en desarrollo). Ginebra: Organización Mundial de la Salud; 1968.
Vieira MLC, Sproesser AJ. V Diretrizes Brasileiras de Hipertensão Arterial. Arq Bras Cardiol. 2007;89(3):e24-e79.
Pouliot MC, Després JP, Lemieux S, et al. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol. 1994;73(7):460-8.
World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications. Report of a WHO Consultation. Part 1: Diagnosis and classification of Diabetes Mellitus. Geneva: World Health Organization; 1999. Available from: http://www.staff.ncl.ac.uk/philip.home/who_dmg.pdf. Accessed in 2011 (Apr 4).
Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148(3):839-43.
Barbosa PJB, Lessa O, Almeida Filho N, Magalhães LBNC, Araújo J. Critério de obesidade central em população brasileira: impacto sobre a síndrome metabólica [Criteria for central obesity in a Brazilian population: impact on metabolic syndrome]. Arq Bras Cardiol. 2006;87(4):407-14.
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486-97.
Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i-xii, 1-253.
Han TS, van Leer EM, Seidell JC, Lean ME. Waist circumference action levels in the identification of cardiovascular risk factors: prevalence study in a random sample. BMJ. 1995;311(7017):1401-5.
Velásquez-Meléndez G, Gazzinelli A, Côrrea-Oliveira R, Pimenta AM, Kac G. Prevalence of metabolic syndrome in a rural area of Brazil. Sao Paulo Med J. 2007;125(3):155-62.
Rodrigues SL, Baldo MP, Sá Cunha R, et al. Anthropometric measures of increased central and overall adiposity in association with echocardiographic left ventricular hypertrophy. Hypertens Res. 2010;33(1):83-7.
Zhou Z, Hu D, Chen J. Association between obesity indices and blood pressure or hypertension: which index is the best? Public Health Nutr. 2009;12(8):1061-71.
Decoda Study Group, Nyamdorj R, Qiao Q, et al. BMI compared with central obesity indicators in relation to diabetes and hypertension in Asians. Obesity (Silver Spring). 2008;16(7):1622-35.
Nyamdorj R, Qiao Q, Söderberg S, et al. Comparison of body mass index with waist circumference, waist-to-hip ratio, and waist-to-stature ratio as a predictor of hypertension incidence in Mauritius. J Hypertens. 2008;26(5):866-70.
Vasques ACJ, Rosado LEFPL, Rosado GP, et al. Habilidade de indicadores antropométricos e de composição corporal em identificar a resistência à insulina [Predictive ability of anthropometric and body composition indicators in the identification of insulin resistance]. Arq Bras Endocrinol Metab. 2009;53(1):72-9.
Hsieh SD, Yoshinaga H. Do people with similar waist circumference share similar health risks irrespective of height? Tohoku J Exp Med. 1999;188(1):55-60.
Gabir MM, Hanson RL, Dabelea D, et al. The 1997 American Diabetes Association and 1999 World Health Organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. Diabetes Care. 2000;23(8):1108-12.
Tirosh A, Shai I, Tekes-Manova D, et al. Normal fasting plasma glucose levels and type 2 diabetes in young men. N Engl J Med. 2005;353(14):1454-62.
Shaw JE, Zimmet PZ, Hodge AM, et al. Impaired fasting glucose: how low should it go? Diabetes Care. 2000;23(1):34-9.
Tanne D, Koren-Morag N, Goldbourt U. Fasting plasma glucose and risk of incident ischemic stroke or transient ischemic attacks: a prospective cohort study. Stroke. 2004;35(10):2351-5.
Simons LA, Friedlander Y, McCallum J, Simons J. Fasting plasma glucose in non-diabetic elderly women predicts increased all-causes mortality and coronary heart disease risk. Aust N Z J Med. 2000;30(1):41-7.
Thomas GN, Chook P, Qiao M, et al. Deleterious impact of “high normal” glucose levels and other metabolic syndrome components on arterial endothelial function and intima-media thickness in apparently healthy Chinese subjects: the CATHAY study. Arterioscler Thromb Vasc Biol. 2004;24(4):739-43.
Kim DJ, Kim KW, Cho NH, et al. The cutoff value of fasting plasma glucose to differentiate frequencies of cardiovascular risk factors in a Korean population. Diabetes Care. 2003;26(12):3354-6.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33 Suppl 1:S62-9.