Performance of the CKD-EPI and MDRD equations for estimating glomerular filtration rate

a systematic review of Latin American studies

Authors

Keywords:

Renal insufficiency, chronic, Glomerular filtration rate, Latin America, Systematic review [publication type], Meta-analysis [publication type]

Abstract

BACKGROUND: The most-used equations for estimating the glomerular filtration rate (GFR) are the CKD Epidemiology Collaboration (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) equations. However, it is unclear which of these shows better performance in Latin America. OBJECTIVE: To assess the performance of two equations for estimated GFR (eGFR) in Latin American countries. DESIGN AND SETTING: Systematic review and meta-analysis in Latin American countries. METHODS: We searched in three databases to identify studies that reported eGFR using both equations and compared them with measured GFR (mGFR) using exogenous filtration markers, among adults in Latin American countries. We performed meta-analyses on P30, bias (using mean difference [MD] and 95% confidence intervals [95% CI]), sensitivity and specificity; and evaluated the certainty of evidence using the GRADE methodology. RESULTS: We included 12 papers, and meta-analyzed six (five from Brazil and one from Mexico). Meta-analyses that compared CKD-EPI using creatinine measured with calibration traceable to isotope dilution mass spectrometry (CKD-EPI-Cr IDMS) and using MDRD-4 IDMS did not show differences in bias (MD: 0.55 ml/min/1.73m2; 95% CI: -3.34 to 4.43), P30 (MD: 4%; 95% CI: -2% to 11%), sensitivity (76% and 75%) and specificity (91% and 89%), with very low certainty of evidence for bias and P30, and low certainty of evidence for sensitivity and specificity. CONCLUSION: We found that the performances of CKD-EPI-Cr IDMS and MDRD-4 IDMS did not differ significantly. However, since most of the meta-analyzed studies were from Brazil, the results cannot be extrapolated to other Latin American countries. REGISTRATION: PROSPERO (CRD42019123434) - https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019123434.

Downloads

Download data is not yet available.

Author Biographies

Ana Brañez-Condorena, EsSalud, Instituto de Evaluación de Tecnologías en Salud e Investigación

Undergraduate Student, Facultad de Medicina and Asociación para el Desarrollo de la Investigación Estudiantil en Ciencias de la Salud, Universidad Nacional Mayor de San Marcos, Lima, Peru.

Sergio Goicochea-Lugo, EsSalud, Instituto de Evaluación de Tecnologías en Salud e Investigación

MD. Methodologist, EsSalud, Instituto de Evaluación de Tecnologías en Salud e Investigación, Lima, Peru.

Jessica Hanae Zafra-Tanaka, EsSalud, Instituto de Evaluación de Tecnologías en Salud e Investigación

MD, MSc. Professor, Escuela de Medicina, Universidad Científica del Sur, Lima, Peru.

Naysha Becerra-Chauca, EsSalud, Instituto de Evaluación de Tecnologías en Salud e Investigación

Midwife. Methodologist, EsSalud, Instituto de Evaluación de Tecnologías en Salud e Investigación, Lima, Peru.

Virgilio Efrain Failoc-Rojas, EsSalud, Instituto de Evaluación de Tecnologías en Salud e Investigación

MD, MSc. Methodologist, EsSalud, Instituto de Evaluación de Tecnologías en Salud e Investigación, Lima, Peru; and Researcher, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru.

Percy Herrera-Añazco, EsSalud, Instituto de Evaluación de Tecnologías en Salud e Investigación

MD, MHEd. Researcher, Universidad Privada San Juan Bautista, Lima, Peru; and Assistant Manager, EsSalud, Instituto de Evaluación de Tecnologías en Salud e Investigación, Lima, Peru.

Alvaro Taype-Rondan, EsSalud, Instituto de Evaluación de Tecnologías en Salud e Investigación

MD, MSc. Methodologist, EsSalud, Instituto de Evaluación de Tecnologías en Salud e Investigación, Lima, Peru; and Researcher, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru.

References

Hill NR, Fatoba ST, Oke JL, et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One. 2016;11(7):e0158765. PMID: 27383068; https://doi.org/10.1371/journal.pone.0158765

GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1859-922. PMID: 30415748; https://doi.org/10.1016/S0140-6736(18)32335-3 Erratum in: Lancet. 2019;393(10190):e44.

GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736-88. PMID: 30496103; https://doi.org/10.1016/S0140-6736(18)32203-7 Erratum in: Lancet. 2019;393(10190):e44. Erratum in: Lancet. 2018;392(10160):2170.

Levin A, Stevens PE, Bilous RW, et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1-150. https://doi.org/10.1038/kisup.2012.73

Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem. 1992;38(10):1933-53. PMID: 1394976.

Ferguson TW, Komenda P, Tangri N. Cystatin C as a biomarker for estimating glomerular filtration rate. Curr Opin Nephrol Hypertens. 2015;24(3):295-300. PMID: 26066476; https://doi.org/10.1097/MNH.0000000000000115

Brück K, Jager KJ, Dounousi E, et al. Methodology used in studies reporting chronic kidney disease prevalence: a systematic literature review. Nephrol Dial Transplant. 2015;30 Suppl 4(Suppl 4):iv6-16.. PMID: 26209739; https://doi.org/10.1093/ndt/gfv131

Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461-70. PMID: 10075613; https://doi.org/10.7326/0003-4819-130-6-199903160-00002

Levey AS, Greene T, Kusek JW, Beck GJ. A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol. 2000;11:155A. Available from: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/658418 Accessed in 2021 (Mar 24).

Levey AS, Coresh J, Greene T, et al. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem. 2007;53(4):766-72. PMID: 17332152; https://doi.org/10.1373/clinchem.2006.077180

Killeen AA, Ashwood ER, Ventura CB, Styer P. Recent trends in performance and current state of creatinine assays. Arch Pathol Lab Med. 2013;137(4):496-502. PMID: 23544939; https://doi.org/10.5858/arpa.2012-0134-CP

Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12. PMID: 19414839; https://doi.org/10.7326/0003-4819-150-9-200905050-00006 Erratum in: Ann Intern Med. 2011;155(6):408.

Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20-9. PMID: 22762315; https://doi.org/10.1056/NEJMoa1114248

Björk J, Grubb A, Larsson A, et al. Accuracy of GFR estimating equations combining standardized cystatin C and creatinine assays: a cross-sectional study in Sweden. Clin Chem Lab Med. 2015;53(3):403-14. PMID: 25274955; https://doi.org/10.1515/cclm-2014-0578 Erratum in: Clin Chem Lab Med. 2016;54(5):897.

Omuse G, Maina D, Mwangi J, et al. Comparison of equations for estimating glomerular filtration rate in screening for chronic kidney disease in asymptomatic black Africans: a cross sectional study. BMC Nephrol. 2017;18(1):369. PMID: 29262800; https://doi.org/10.1186/s12882-017-0788-y

Salvador-González B, Rodríguez-Latre LM, Güell-Miró R, et al. Estimation of glomerular filtration rate by MDRD-4 IDMS and CKD-EPI in individuals of 60 years of age or older in primary care. Nefrologia. 2013;33(4):552-63. PMID: 23897188; https://doi.org/10.3265/Nefrologia.pre2013.Apr.11929

Teo BW, Xu H, Wang D, et al. GFR estimating equations in a multiethnic Asian population. Am J Kidney Dis. 2011;58(1):56-63. PMID: 21601325; https://doi.org/10.1053/j.ajkd.2011.02.393

Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis. 2010;56(1):32-8. PMID: 20416999; https://doi.org/10.1053/j.ajkd.2010.02.344

Rodriguez RA, Hernandez GT, O’Hare AM, Glidden DV, Pérez-Stable EJ. Creatinine levels among Mexican Americans, Puerto Ricans, and Cuban Americans in the Hispanic Health and Nutrition Examination Survey. Kidney Int. 2004;66(6):2368-73. PMID: 15569328; https://doi.org/10.1111/j.1523-1755.2004.66025.x

Udler MS, Nadkarni GN, Belbin G, et al. Effect of Genetic African Ancestry on eGFR and Kidney Disease. J Am Soc Nephrol. 2015;26(7):1682-92. PMID: 25349204; https://doi.org/10.1681/ASN.2014050474

Gallagher D, Visser M, De Meersman RE, et al. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Psychol. 1997;83(1):229-39. PMID: 9216968; https://doi.org/10.1152/jappl.1997.83.1.229

Wang S, Lewis Jr CM, Jakobsson M, et al. Genetic variation and population structure in Native Americans. PLoS Genet. 2007;3(11):e185. PMID: 18039031; https://doi.org/10.1371/journal.pgen.0030185

Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700. PMID: 19622552; https://doi.org/10.1136/bmj.b2700

Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529-36. PMID: 22007046; https://doi.org/10.7326/0003-4819-155-8-201110180-00009

Schünemann HJ, Oxman AD, Brozek J, et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ. 2008;336(7653):1106-10. PMID: 18483053; https://doi.org/10.1136/bmj.39500.677199.AE

Schünemann HJ, Mustafa RA, Brozek J, et al. GRADE guidelines: 22. The GRADE approach for tests and strategies-from test accuracy to patient-important outcomes and recommendations. J Clin Epidemiol. 2019;111:69-82. PMID: 30738926; https://doi.org/10.1016/j.jclinepi.2019.02.003

Guyatt GH, Thorlund K, Oxman AD, et al. GRADE guidelines: 13. Preparing summary of findings tables and evidence profiles-continuous outcomes. J Clin Epidemiol. 2013;66(2):173-83. PMID: 23116689; https://doi.org/10.1016/j.jclinepi.2012.08.001

McFadden EC, Hirst JA, Verbakel JY, et al. Systematic Review and Metaanalysis Comparing the Bias and Accuracy of the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration Equations in Community-Based Populations. Clin Chem. 2018;64(3):475-85. PMID: 29046330; https://doi.org/10.1373/clinchem.2017.276683

Arreola-Guerra JM, Rincón-Pedrero R, Cruz-Rivera C, et al. Performance of MDRD-IDMS and CKD-EPI equations in Mexican individuals with normal renal function. Nefrologia. 2014;34(5):591-8. PMID: 25259814; https://doi.org/10.3265/Nefrologia.pre2014.Jun.12538

Asnani MR, Lynch O, Reid ME. Determining glomerular filtration rate in homozygous sickle cell disease: utility of serum creatinine based estimating equations. PLoS One. 2013;8(7):e69922. PMID: 23894560; https://doi.org/10.1371/journal.pone.0069922

Camargo EG, Soares AA, Detanico AB, et al. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation is less accurate in patients with Type 2 diabetes when compared with healthy individuals. Diabet Med. 2011;28(1):90-5. PMID: 21166850; https://doi.org/10.1111/j.1464-5491.2010.03161.x

David-Neto E, Triboni AH, Ramos F, et al. Evaluation of MDRD4, CKD-EPI, BIS-1, and modified Cockcroft-Gault equations to estimate glomerular filtration rate in the elderly renal-transplanted recipients. Clin Transplant. 2016;30(12):1558-63. PMID: 27726196; https://doi.org/10.1111/ctr.12857

Lopes MB, Araújo LQ, Passos MT, et al. Estimation of glomerular filtration rate from serum creatinine and cystatin C in octogenarians and nonagenarians. BMC Nephrol. 2013;14(1):265. PMID: 24295505; https://doi.org/10.1186/1471-2369-14-265

Lujan PR, Chiurchiu C, Douthat W, et al. CKD-EPI instead of MDRD for candidates to kidney donation. Transplantation. 2012;94(6):637-41. PMID: 22918217; https://doi.org/10.1097/TP.0b013e3182603260

Martinez-Martinez MU, Mandeville P, Llamazares-Azuara L, Abud-Mendoza C. CKD-EPI is the most reliable equation to estimate renal function in patients with systemic lupus erythematosus. Nefrologia. 2013;33(1):99-106. PMID: 23364632; https://doi.org/10.3265/Nefrologia.pre2012.Jun.11101

Silveiro SP, Araujo GN, Ferreira MN, et al. Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation pronouncedly underestimates glomerular filtration rate in type 2 diabetes. Diabetes Care. 2011;34(11):2353-5. PMID: 21926286; https://doi.org/10.2337/dc11-1282

Trimarchi H, Muryan A, Martino D, et al. Creatinine- vs. cystatin C-based equations compared with 99mTcDTPA scintigraphy to assess glomerular filtration rate in chronic kidney disease. J Nephrol. 2012;25(6):1003-15. PMID: 22322818; https://doi.org/10.5301/jn.5000083

Veronese FV, Gomes EC, Chanan J, et al. Performance of CKD-EPI equation to estimate glomerular filtration rate as compared to MDRD equation in South Brazilian individuals in each stage of renal function. Clin Chem Lab Med. 2014;52(12):1747-54. PMID: 24940711; https://doi.org/10.1515/cclm-2014-0052

Zanocco JA, Nishida SK, Passos MT, et al. Race adjustment for estimating glomerular filtration rate is not always necessary. Nephron Extra. 2012;2(1):293-302. PMID: 23243414; https://doi.org/10.1159/000343899

Asnani M, Reid M. Cystatin C: a useful marker of glomerulopathy in sickle cell disease? Blood Cells Mol Dis. 2015;54(1):65-70. PMID: 25300191; https://doi.org/10.1016/j.bcmd.2014.07.018

Sudchada P, Laehn S. Comparisons of GFR estimation using the CKD Epidemiology Collaboration (CKD-EPI) equation and other creatinine-based equations in Asian population: a systematic review. Int Urol Nephrol. 2016;48(9):1511-7. PMID: 27387997; https://doi.org/10.1007/s11255-016-1357-1

Chen LI, Guh JY, Wu KD, et al. Modification of diet in renal disease (MDRD) study and CKD epidemiology collaboration (CKD-EPI) equations for Taiwanese adults. PLoS One. 2014;9(6):e99645. PMID: 24927124; https://doi.org/10.1371/journal.pone.0099645

Jessani S, Levey AS, Bux R, et al. Estimation of GFR in South Asians: a study from the general population in Pakistan. Am J Kidney Dis. 2014;63(1):49-58. PMID: 24074822; https://doi.org/10.1053/j.ajkd.2013.07.023

Stevens LA, Claybon MA, Schmid CH, et al. Evaluation of the Chronic Kidney Disease Epidemiology Collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int. 2011;79(5):555-62. PMID: 21107446; https://doi.org/10.1038/ki.2010.462

Pena SD, Di Pietro G, Fuchshuber-Moraes M, et al. The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS One. 2011;6(2):e17063. PMID: 21359226; https://doi.org/10.1371/journal.pone.0017063

Caputo M, Corach D. Analysis of locus D9S1120 and its genetic admixture correlation in seven Argentina native American ethnic groups. Am J Hum Biol. 2016;28(1):57-66. PMID: 26089282; https://doi.org/10.1002/ajhb.22755

Parolin ML, Tamburrini C, Real LE, Basso NG. Population genetic analysis of 23 Y-STR loci in Central Argentine Patagonia. Int J Legal Med. 2019;133(3):777-9. PMID: 30032459; https://doi.org/10.1007/s00414-018-1896-3

Zatz R, Romão JE Jr, Noronha IL. Nephrology in Latin America, with special emphasis on Brazil. Kidney Int Suppl. 2003;(83):S131-4. PMID: 12864892; https://doi.org/10.1046/j.1523-1755.63.s83.28.x

Instituto Nacional de Estadística e Informática (INEI). Perú: Perfil Sociodemográfico. Informe Nacional. Lima: INEI; 2018.

Porrini E, Ruggenenti P, Luis-Lima S, et al. Estimated GFR: time for a critical appraisal. Nat Rev Nephrol. 2019;15(3):177-90. PMID: 30518813; https://doi.org/10.1038/s41581-018-0080-9

Downloads

Published

2021-09-02

How to Cite

1.
Brañez-Condorena A, Goicochea-Lugo S, Zafra-Tanaka JH, Becerra-Chauca N, Failoc-Rojas VE, Herrera-Añazco P, Taype-Rondan A. Performance of the CKD-EPI and MDRD equations for estimating glomerular filtration rate: a systematic review of Latin American studies. Sao Paulo Med J [Internet]. 2021 Sep. 2 [cited 2025 Mar. 12];139(5):452-63. Available from: https://periodicosapm.emnuvens.com.br/spmj/article/view/518

Issue

Section

Original Article