Association of salivary alpha-2-macroglobulin with glycemia and glycated hemoglobin in type 2 diabetes mellitus

a systematic review and meta-analysis study

Autores

Palavras-chave:

Saliva, Biomarkers, Diabetes mellitus, Blood glucose, Salivary proteins and peptides

Resumo

BACKGROUND: Chronically elevated alpha-2-macroglobulin (A2MG) in the blood has been correlated with diabetes and the HbA1c profile; however, no systematic review has been conducted to evaluate the association of A2MG salivary levels and glycemia or HbA1c levels in diabetes mellitus type 2 (DM2) patients. OBJECTIVE: To evaluate whether A2MG salivary levels are related to the glycemia or HbA1c levels in DM2 patients. DESIGN AND SETTING: Systematic review developed at Universidade Federal de Uberlândia (UFU), Brazil. METHODS: Eight databases were used as research sources. The eligibility criteria included studies that reported data regarding mean salivary A2MG and the correlation between glycemia and/or HbA1c levels of DM2 subjects (uncontrolled and well-controlled) and non-diabetic subjects. The risk of bias of the studies selected was assessed using the Joanna Briggs Institute (JBI) critical apraisal tools for use in JBI systematic reviews. Pooled correlation coefficients were estimated using the Hunter-Schmidt method. Study estimates were weighted according to their sample size, and heterogeneity was calculated using the chi-square statistic. RESULTS: Four studies on DM2 patients were included in this systematic review after careful analysis of 1482 studies. Three studies compared A2MG with HbA1c and glycemia. Overall, the correlation between A2MG and HbA1c was strong (r = 0.838). In contrast, the correlation between A2MG and glycemia was low (r = 0.354). CONCLUSION: The strong association between HbA1C and salivary A2MG suggests that this salivary protein has the potential to be a surrogate for HbA1C, if corroboratory further evidence is obtained throughlarge-scale studies. SYSTEMATIC REVIEW REGISTRATION: CRD42020183831.

Downloads

Não há dados estatísticos.

Biografia do Autor

Douglas Carvalho Caixeta, Universidade Federal de Uberlândia

PhD. Collaborative Researcher, Innovation Center in Salivary Diagnostics and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia (UFU), Uberlândia (MG), Brazil.

Pedro Rogério Camargos Pennisi, Universidade Federal de Uberlândia

Undergraduate Dentistry Student, School of Dentistry, Universidade Federal de Uberlândia (UFU), Uberlandia (MG), Brazil.

Douglas Vieira Moura, Universidade Federal de Uberlândia

Master’s Student, Innovation Center in Salivary Diagnostics and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia (UFU), Uberlândia (MG), Brazil.

Marjorie Adriane Costa Nunes, Universidade Federal de Uberlândia

MSc. Doctoral Student, School of Dentistry, Universidade CEUMA, São Luiz (MA), Brazil.

Foued Salmen Espindola, Universidade Federal de Uberlândia

PhD. Professor, Institute of Biotechnology, Universidade Federal de Uberlândia (UFU), Uberlândia (MG), Brazil.

Cauane Blumenberg, Universidade Federal de Uberlândia

PhD. Collaborative Researcher, Postgraduate Program on Epidemiology, Universidade Federal University de Pelotas (UFPel), Pelotas (RS), Brazil.

Luiz Renato Paranhos, Universidade Federal de Uberlândia

PhD. Professor, Division of Preventive and Social Dentistry, School of Dentistry, Universidade Federal de Uberlândia (UFU), Uberlândia (MG), Brazil.

Robinson Sabino-Silva, Universidade Federal de Uberlândia

PhD. Professor, Innovation Center in Salivary Diagnostics and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia (UFU), Uberlândia (MG), Brazil.

Referências

Ashcroft FM, Rorsman P. Diabetes mellitus and the β cell: the last ten years. Cell. 2012;148(6):1160-71. PMID: 22424227; https://doi.org/10.1016/j.cell.2012.02.010.

Rohlfing CL, Wiedmeyer HM, Little RR, et al. Defining the relationship between plasma glucose and HbA(1c): analysis of glucose profiles and HbA(1c) in the Diabetes Control and Complications Trial. Diabetes Care. 2002;25(2):275-8. PMID: 11815495; https://doi.org/10.2337/diacare.25.2.275

American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S13-S27. PMID: 29222373; https://doi.org/10.2337/dc18-S002.

Mascarenhas P, Fatela B, Barahona I. Effect of diabetes mellitus type 2 on salivary glucose--a systematic review and meta-analysis of observational studies. PLoS One. 2014;9(7):e101706. PMID: 25025218; https://doi.org/10.1371/journal.pone.0101706.

Katulanda GW, Katulanda P, Dematapitiya C, et al. Plasma glucose in screening for diabetes and pre-diabetes: how much is too much? Analysis of fasting plasma glucose and oral glucose tolerance test in Sri Lankans. BMC Endocr Disord. 2019;19(1):11. PMID: 30670002; https://doi.org/10.1186/s12902-019-0343-x.

World Health Organization. Use of glycated haemoglobin (HbA1c) in diagnosis of diabetes mellitus: abbreviated report of a WHO consultation. Geneva: World Health Organization; 2011. Available from: https://apps.who.int/iris/bitstream/handle/10665/70523/WHO_NMH_CHP_CPM_11.1_eng.pdf?sequence=1&isAllowed=y. Accessed in 2021 (Oct 4).

Chiappelli F, Iribarren FJ, Prolo P. Salivary biomarkers in psychobiological medicine. Bioinformation. 2006;1(8):331-4. PMID: 17597915; https://doi.org/10.1186/s12902-019-0343-x10.6026/97320630001331.

Sabino-Silva R, Alves-Wagner AB, Burgi K, et al. SGLT1 protein expression in plasma membrane of acinar cells correlates with the sympathetic outflow to salivary glands in diabetic and hypertensive rats. Am J Physiol Endocrinol Metab. 2010;299(6):E1028-37. PMID: 20841505; https://doi.org/10.1152/ajpendo.00395.2010.

Sabino-Silva R, Okamoto MM, David-Silva A, et al. Increased SGLT1 expression in salivary gland ductal cells correlates with hyposalivation in diabetic and hypertensive rats. Diabetol Metab Syndr. 2013;5(1):64. PMID: 24499577; https://doi.org/10.1186/1758-5996-5-64.

Pederson ED, Stanke SR, Whitener SJ, et al. Salivary levels of alpha 2-macroglobulin, alpha 1-antitrypsin, C-reactive protein, cathepsin G and elastase in humans with or without destructive periodontal disease. Arch Oral Biol. 1995;40(12):1151-5. PMID: 8850655; https://doi.org/10.1016/0003-9969(95)00089-5.

Prathibha KM, Johnson P, Ganesh M, Subhashini AS. Evaluation of Salivary Profile among Adult Type 2 Diabetes Mellitus Patients in South India. J Clin Diagn Res. 2013;7(8):1592-5. PMID: 24086848; https://doi.org/10.7860/JCDR/2013/5749.3232.

Caixeta DC, Aguiar EMG, Cardoso-Sousa L, et al. Salivary molecular spectroscopy: A sustainable, rapid and non-invasive monitoring tool for diabetes mellitus during insulin treatment. PLoS One. 2020;15(3):e0223461. PMID: 32182246; https://doi.org/10.1371/journal.pone.0223461.

Cater JH, Wilson MR, Wyatt AR. Alpha-2-Macroglobulin, a Hypochlorite-Regulated Chaperone and Immune System Modulator. Oxid Med Cell Longev. 2019;2019:5410657. PMID: 31428227; https://doi.org/10.1155/2019/5410657.

Marrero A, Duquerroy S, Trapani S, et al. The crystal structure of human alpha2-macroglobulin reveals a unique molecular cage. Angew Chem Int Ed Engl. 2012;51(14):3340-4. PMID: 22290936; https://doi.org/10.1002/anie.201108015.

Garcia-Ferrer I, Marrero A, Gomis-Ruth FX, Goulas T. α2-Macroglobulins: Structure and Function. Subcell Biochem. 2017;83:149-83. PMID: 28271476; https://doi.org/10.1007/978-3-319-46503-6_6.

Milosavljevic TS, Petrovic MV, Cvetkovic ID, Grigorov II. DNA binding activity of C/EBPbeta and C/EBPdelta for the rat alpha2-macroglobulin gene promoter is regulated in an acute-phase dependent manner. Biochemistry (Mosc). 2002;67(8):918-26. PMID: 12223092; https://doi.org/10.1023/a:1019922805828.

Harpel PC. Studies on human plasma alpha 2-macroglobulin-enzyme interactions. Evidence for proteolytic modification of the subunit chain structure. J Exp Med. 1973;138(3):508-21. PMID: 4269559; https://doi.org/10.1084/jem.138.3.508.

Yoshino S, Fujimoto K, Takada T, et al. Molecular form and concentration of serum α2-macroglobulin in diabetes. Sci Rep. 2019;9(1):12927. PMID: 31506491; https://doi.org/10.1038/s41598-019-49144-7.

Takada T, Kodera Y, Matsubara M, et al. Serum monomeric alpha2-macroglobulin as a clinical biomarker in diabetes. Atherosclerosis. 2013;228(1):270-6. PMID: 23535567; https://doi.org/10.1016/j.atherosclerosis.2013.02.035.

James K, Merriman J, Gray RS, Duncan LJ, Herd R. Serum alpha 2-macroglobulin levels in diabetes. J Clin Pathol. 1980;33(2):163-6. PMID: 6154066; https://doi.org/10.1136/jcp.33.2.163.

Nakamoto I, Morimoto K, Takeshita T, Toda M. Correlation between saliva glycated and blood glycated proteins. Environ Health Prev Med. 2003;8(3):95-9. PMID: 21432106; https://doi.org/10.1007/BF02897922.

Aitken JP, Ortiz C, Morales-Bozo I, et al. Alpha-2-macroglobulin in saliva is associated with glycemic control in patients with type 2 diabetes mellitus. Dis Markers. 2015;2015:128653. PMID: 25821337; https://doi.org/10.1155/2015/128653.

Bencharit S, Baxter SS, Carlson J, et al. Salivary proteins associated with hyperglycemia in diabetes: a proteomic analysis. Mol Biosyst. 2013;9(11):2785-97. PMID: 24056972; https://doi.org/10.1039/c3mb70196d.

Rao PV, Reddy AP, Lu X, et al. Proteomic identification of salivary biomarkers of type-2 diabetes. J Proteome Res. 2009;8(1):239-45. PMID: 19118452; https://doi.org/10.1021/pr8003776.

Chung TJ, Hsu KY, Chen JH, et al. Association of salivary alpha 2-macroglobulin levels and clinical characteristics in type 2 diabetes. J Diabetes Investig. 2016;7(2):190-6. PMID: 27042270; https://doi.org/10.1111/jdi.12382.

Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349:g7647. PMID: 25555855; https://doi.org/10.1136/bmj.g7647.

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. PMID: 33782057; https://doi.org/10.1136/bmj.n71.

Aromataris E, Munn Z, editors. JBI Manual for Evidence Synthesis. Adelaide, Australia: JBI; 2020.

Rodrigues RPCB, Vieira WA, Siqueira WL, et al. Saliva as a tool for monitoring hemodialysis: a systematic review and meta-analysis. Braz Oral Res. 2020;35:e016. PMID: 33331408; https://doi.org/10.1590/1807-3107bor-2021.vol35.0016.

Field AP. Meta-analysis of correlation coefficients: a Monte Carlo comparison of fixed- and random-effects methods. Psychol Methods. 2001;6(2):161-80. PMID: 11411440; https://doi.org/10.1037/1082-989x.6.2.161.

Hunter J, Schmidt F. Methods of Meta-Analysis Corrected Error and Bias in Research Findings. 2nd ed. Thousand Oaks, California: Sage Publications; 2004.

Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med. 2018;18(3):91-3. PMID: 30191186; https://doi.org/10.1016/j.tjem.2018.08.001.

Balshem H, Helfand M, Schünemann HJ, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401-6. PMID: 21208779; https://doi.org/10.1016/j.jclinepi.2010.07.015.

Discher T, Velcovsky HG, Federlin K. Alpha-2-Makroglobulin-Konzentrationsbestimmung mittels immunologischer und amidolytischer Methode bei Diabetikern und Nierenpatienten [Determination of alpha-2-macroglobulin concentration using immunologic and amidolytic methods in diabetics and kidney patients]. Immun Infekt. 1985;13(1):21-3. PMID: 2579893.

Senthilmohan T. The role of human alpha-2-macroglobulin in health and disease [thesis]. Falmer: University of Sussex; 1994.

Feng JK, Lu YF, Li J, et al. Upregulation of salivary alpha2 macroglobulin in patients with type 2 diabetes mellitus. Genet Mol Res. 2015;14(1):2268-74. PMID: 25867373; https://doi.org/10.4238/2015.March.27.12.

Nsr-Allah A, El-Osh S, Ahmed A, Hazem S. Salivary α2-macroglobulin as a marker for glycemic control in patients with type 2 diabetes mellitus. Egypt J Intern Med. 2019;31:155. https://doi.org/10.4103/ejim.ejim_117_18.

Rastogi V, Kalra P, Gowda MV. Relationship between Salivary Alpha-2 Macroglobulin and HbA1c among Patients with Type-2 Diabetes Mellitus: A Cross-sectional Study. Indian J Endocrinol Metab. 2019;23(2):184-7. PMID: 31161100; https://doi.org/10.4103/ijem.IJEM_40_19.

Barr RG, Nathan DM, Meigs JB, Singer DE. Tests of glycemia for the diagnosis of type 2 diabetes mellitus. Ann Intern Med. 2002;137(4):263-72. PMID: 12186517; https://doi.org/10.7326/0003-4819-137-4-200208200-00011.

Guo F, Moellering DR, Garvey WT. Use of HbA1c for diagnoses of diabetes and prediabetes: comparison with diagnoses based on fasting and 2-hr glucose values and effects of gender, race, and age. Metab Syndr Relat Disord. 2014;12(5):258-68. PMID: 24512556; https://doi.org/10.1089/met.2013.0128.

Makris K, Spanou L. Is there a relationship between mean blood glucose and glycated hemoglobin? J Diabetes Sci Technol. 2011;5(6):1572-83. PMID: 22226280; https://doi.org/10.1177/193229681100500634.

Lim WY, Ma S, Heng D, Tai ES. Screening for diabetes with HbA1c: Test performance of HbA1c compared to fasting plasma glucose among Chinese, Malay and Indian community residents in Singapore. Sci Rep. 2018;8(1):12419. PMID: 30127499; https://doi.org/10.1038/s41598-018-29998-z.

Downloads

Publicado

2022-11-03

Como Citar

1.
Caixeta DC, Pennisi PRC, Moura DV, Nunes MAC, Espindola FS, Blumenberg C, Paranhos LR, Sabino-Silva R. Association of salivary alpha-2-macroglobulin with glycemia and glycated hemoglobin in type 2 diabetes mellitus: a systematic review and meta-analysis study. Sao Paulo Med J [Internet]. 3º de novembro de 2022 [citado 12º de março de 2025];140(6):818-2. Disponível em: https://periodicosapm.emnuvens.com.br/spmj/article/view/1090

Edição

Seção

Artigo Original