Use of artificial intelligence in ophthalmology
a narrative review
Palavras-chave:
Artificial intelligence, Glaucoma, Retinopathy of prematurity, OphthalmologyResumo
BACKGROUND: Artificial intelligence (AI) deals with development of algorithms that seek to perceive one’s environment and perform actions that maximize one’s chance of successfully reaching one’s predetermined goals. OBJECTIVE: To provide an overview of the basic principles of AI and its main studies in the fields of glaucoma, retinopathy of prematurity, age-related macular degeneration and diabetic retinopathy. From this perspective, the limitations and potential challenges that have accompanied the implementation and development of this new technology within ophthalmology are presented. DESIGN AND SETTING: Narrative review developed by a research group at the Universidade Federal de São Paulo (UNIFESP), São Paulo (SP), Brazil. METHODS: We searched the literature on the main applications of AI within ophthalmology, using the keywords “artificial intelligence”, “diabetic retinopathy”, “macular degeneration age-related”, “glaucoma” and “retinopathy of prematurity,” covering the period from January 1, 2007, to May 3, 2021. We used the MED-LINE database (via PubMed) and the LILACS database (via Virtual Health Library) to identify relevant articles. RESULTS: We retrieved 457 references, of which 47 were considered eligible for intensive review and critical analysis. CONCLUSION: Use of technology, as embodied in AI algorithms, is a way of providing an increasingly accurate service and enhancing scientific research. This forms a source of complement and innovation in relation to the daily skills of ophthalmologists. Thus, AI adds technology to human expertise.
Downloads
Referências
Santos Martins TGD, de Azevedo Costa ALF, Schor P. Comment on: “Do We Have Enough Ophthalmologists to Manage Vision-Threatening Diabetic Retinopathy? A Global Perspective”. Eye (Lond). 2021;35(2):690-1. PMID: 32346104; https://doi.org/10.1038/s41433-020-0903-3
Martins TG, Costa ALF, Helene O, et al. Training of direct ophthalmoscopy using models. Clin Teach. 2017;14(6):423-6. PMID: 28401735; https://doi.org/10.1111/tct.12641
Rajaraman V. McCarthy J. Father of artificial intelligence. Reson 19. 2014;198-207. https://doi.org/10.1007/s12045-014-0027-9
Martins TGDS, Costa ALFA. A new way to communicate science in the era of Big Data and citizen science. Einstein (Sao Paulo). 2017;15(4):523. PMID: 29364372; https://doi.org/10.1590/S1679-45082017CE4280
Martins TGDS, Francisco Kuba MC, Martins TGDS. Teaching Ophthalmology for Machines. Open Ophthalmol J. 2018;12:127-9. PMID: 30069266; https://doi.org/10.2174/1874364101812010127
Martins TGDS, Costa ALFA, Martins TGDS. Big Data use in medical research. Einstein (Sao Paulo). 2018;16(3):eED4087. PMID: 30231146; https://doi.org/10.1590/S1679-45082018ED4087
Lu W, Tong Y, Yu Y, et al. Applications of Artificial Intelligence in Ophthalmology: General Overview. J Ophthalmol. 2018;2018:5278196. PMID: 30581604; https://doi.org/10.1155/2018/5278196
Meskó B, Hetényi G, Győrffy Z. Will artificial intelligence solve the human resource crisis in healthcare? BMC Health Serv Res. 2018;18(1):545. PMID: 30001717; https://doi.org/10.1186/s12913-018-3359-4
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44. PMID: 26017442; https://doi.org/10.1038/nature14539
Tufail A, Rudisill C, Egan C, et al. Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders. Ophthalmology. 2017;124(3):343-351. PMID: 28024825; https://doi.org/10.1016/j.ophtha.2016.11.014
Balyen L, Ünlü K, Deniz Balyen LS. Outcomes of Intravitreal Triamcinolone Acetonide Injection in Patients With Diabetic Macular Edema. Van Med J. 2018;25(1):28-33. https://doi.org/10.5505/vtd.2018.91300
Ting DSW, Cheung CY, Lim G, et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA. 2017;318(22):2211-23. PMID: 29234807; https://doi.org/10.1001/jama.2017.18152
Li Z, Keel S, Liu C, et al. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Diabetes Care. 2018;41(12):2509-16. PMID: 30275284; https://doi.org/10.2337/dc18-0147
Abràmoff MD, Folk JC, Han DP, et al. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 2013;131(3):351-7. PMID: 23494039; https://doi.org/10.1001/jamaophthalmol.2013.1743
Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016;316(22):2402-10. PMID: 27898976; https://doi.org/10.1001/jama.2016.17216
Gulshan V, Rajan RP, Widner K, et al. Performance of a Deep-Learning Algorithm vs Manual Grading for Detecting Diabetic Retinopathy in India. JAMA Ophthalmol. 2019;137(9):987–993. PMID: 31194246; https://doi.org/10.1001/jamaophthalmol.2019.2004
Gargeya R, Leng T. Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology. 2017;124(7):962-9. PMID: 28359545; https://doi.org/10.1016/j.ophtha.2017.02.008
Agurto C, Barriga ES, Murray V, et al. Automatic detection of diabetic retinopathy and age-related macular degeneration in digital fundus images. Invest Ophthalmol Vis Sci. 2011;52(8):5862-71. PMID: 21666234; https://doi.org/10.1167/iovs.10-7075
Zheng Y, Hijazi MH, Coenen F. Automated “disease/no disease” grading of age-related macular degeneration by an image mining approach. Invest Ophthalmol Vis Sci. 2012;53(13):8310-8. PMID: 23150624; https://doi.org/10.1167/iovs.12-9576
Mookiah MR, Acharya UR, Koh JE, et al. Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images. Comput Biol Med. 2014;53:55-64. PMID: 25127409; https://doi.org/10.1016/j.compbiomed.2014.07.015
Burlina PM, Joshi N, Pekala M, et al. Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2017;135(11):1170-6. PMID: 28973096; https://doi.org/10.1001/jamaophthalmol.2017.3782
Grassmann F, Mengelkamp J, Brandl C, et al. A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography. Ophthalmology. 2018;125(9):1410-20. PMID: 29653860; https://doi.org/10.1016/j.ophtha.2018.02.037
Peng Y, Dharssi S, Chen Q, et al. DeepSeeNet: A Deep Learning Model for Automated Classification of Patient-based Age-related Macular Degeneration Severity from Color Fundus Photographs. Ophthalmology. 2019;126(4):565-75. PMID: 30471319; https://doi.org/10.1016/j.ophtha.2018.11.015
Bogunovic H, Montuoro A, Baratsits M, et al. Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging. Invest Ophthalmol Vis Sci. 2017;58(6):BIO141-BIO150. PMID: 28658477; https://doi.org/10.1167/iovs.17-21789
Bogunovic H, Waldstein SM, Schlegl T, et al. Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach. Invest Ophthalmol Vis Sci. 2017;58(7):3240-8. PMID: 28660277; https://doi.org/10.1167/iovs.16-21053
Schlegl T, Waldstein SM, Bogunovic H, et al. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology. 2018;125(4):549-58. PMID: 29224926; https://doi.org/10.1016/j.ophtha.2017.10.031
Schlanitz FG, Baumann B, Kundi M, et al. Drusen volume development over time and its relevance to the course of age-related macular degeneration. Br J Ophthalmol. 2017;101(2):198-203. PMID: 27044341; https://doi.org/10.1136/bjophthalmol-2016-308422
Venhuizen FG, van Ginneken B, van Asten F, et al. Automated Staging of Age-Related Macular Degeneration Using Optical Coherence Tomography. Invest Ophthalmol Vis Sci. 2017;58(4):2318-28. PMID: 28437528; https://doi.org/10.1167/iovs.16-20541
Lee CS, Baughman DM, Lee AY. Deep learning is effective for the classification of OCT images of normal versus age-related Macular Degeneration. Ophthalmol Retina. 2017;1(4):322-7. PMID: 30693348; https://doi.org/10.1016/j.oret.2016.12.009
Li Z, He Y, Keel S, et al. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology. 2018;125(8):1199-1206. PMID: 29506863; https://doi.org/10.1016/j.ophtha.2018.01.023
Muhammad H, Fuchs TJ, De Cuir N, et al. Hybrid Deep Learning on Single Wide-field Optical Coherence Tomography Scans Accurately Classifies Glaucoma Suspects. J Glaucoma. 2017;26(12):1086-94. PMID: 29045329; https://doi.org/10.1097/IJG.0000000000000765
Kim SJ, Cho KJ, Oh S. Development of machine learning models for diagnosis of glaucoma. PLoS One. 2017;12(5):e0177726. PMID: 28542342; https://doi.org/10.1371/journal.pone.0177726
Ahn JM, Kim S, Ahn KS, et al. A deep learning model for the detection of both advanced and early glaucoma using fundus photography. PLoS One. 2018;13(11):e0207982. PMID: 30481205; https://doi.org/10.1371/journal.pone.0207982
Asaoka R, Murata H, Iwase A, Araie M. Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier. Ophthalmology. 2016;123(9):1974-80. PMID: 27395766; https://doi.org/10.1016/j.ophtha.2016.05.029
Shibata N, Tanito M, Mitsuhashi K, et al. Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Sci Rep. 2018;8(1):14665. PMID: 30279554; https://doi.org/10.1038/s41598-018-33013-w
Masumoto H, Tabuchi H, Nakakura S, et al. Deep-learning Classifier With an Ultrawide-field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity. J Glaucoma. 2018;27(7):647-52. PMID: 29781835; https://doi.org/10.1097/IJG.0000000000000988
Elze T, Pasquale LR, Shen LQ, et al. Patterns of functional vision loss in glaucoma determined with archetypal analysis. J R Soc Interface. 2015;12(103):20141118. PMID: 25505132; https://doi.org/10.1098/rsif.2014.1118
Fleck BW, Dangata Y. Causes of visual handicap in the Royal Blind School, Edinburgh, 1991-2. Br J Ophthalmol. 1994;78(5):421. PMID: 8025088; https://doi.org/10.1136/bjo.78.5.421-a
Quinn GE. Retinopathy of prematurity blindness worldwide: phenotypes in the third epidemic. Eye Brain. 2016;8:31-6. PMID: 28539799; https://doi.org/10.2147/EB.S94436
Chiang MF, Jiang L, Gelman R, Du YE, Flynn JT. Interexpert agreement of plus disease diagnosis in retinopathy of prematurity. Arch Ophthalmol. 2007;125(7):875-80. PMID: 17620564; https://doi.org/10.1001/archopht.125.7.875
Reynolds JD, Dobson V, Quinn GE, et al. Evidence-based screening criteria for retinopathy of prematurity: natural history data from the CRYO-ROP and LIGHT-ROP studies. Arch Ophthalmol. 2002;120(11):1470-6. PMID: 12427059; https://doi.org/10.1001/archopht.120.11.1470
Daniel E, Quinn GE, Hildebrand PL, et al. Validated System for Centralized Grading of Retinopathy of Prematurity: Telemedicine Approaches to Evaluating Acute-Phase Retinopathy of Prematurity (e-ROP) Study. JAMA Ophthalmol. 2015;133(6):675-82. PMID: 25811772; https://doi.org/10.1001/jamaophthalmol.2015.0460
Wittenberg LA, Jonsson NJ, Chan RV, Chiang MF. Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity. J Pediatr Ophthalmol Strabismus. 2012;49(1):11-9; quiz 10, 20. PMID: 21366159; https://doi.org/10.3928/01913913-20110222-01
Capowski JJ, Kylstra JA, Freedman SF. A numeric index based on spatial frequency for the tortuosity of retinal vessels and its application to plus disease in retinopathy of prematurity. Retina. 1995;15(6):490-500. PMID: 8747443; https://doi.org/10.1097/00006982-199515060-00006
Oloumi F, Rangayyan RM, Ells AL. Quantification of the changes in the openness of the major temporal arcade in retinal fundus images of preterm infants with plus disease. Invest Ophthalmol Vis Sci. 2014;55(10):6728-35. PMID: 25168897; https://doi.org/10.1167/iovs.13-13640
Brown JM, Campbell JP, Beers A, et al. Imaging and Informatics in Retinopathy of Prematurity (i-ROP) Research Consortium. Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2018;136(7):803-10. PMID: 29801159; https://doi.org/10.1001/jamaophthalmol.2018.1934
Redd TK, Campbell JP, Brown JM, et al. Imaging and Informatics in Retinopathy of Prematurity (i-ROP) Research Consortium. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. Br J Ophthalmol. 2018:bjophthalmol-2018-313156. PMID: 30470715; https://doi.org/10.1136/bjophthalmol-2018-313156
Xiao S, Bucher F, Wu Y, et al. Fully automated, deep learning segmentation of oxygen-induced retinopathy images. JCI Insight. 2017;2(24):e97585. PMID: 29263301; https://doi.org/10.1172/jci.insight.97585
Ataer-Cansizoglu E, Bolon-Canedo V, Campbell JP, et al. i-ROP Research Consortium. Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity: Performance of the “i-ROP” System and Image Features Associated With Expert Diagnosis. Transl Vis Sci Technol. 2015;4(6):5. PMID: 26644965; https://doi.org/10.1167/tvst.4.6.5
Wang J, Ju R, Chen Y, et al. Automated retinopathy of prematurity screening using deep neural networks. EBioMedicine. 2018;35:361-368. PMID: 30166272; https://doi.org/10.1016/j.ebiom.2018.08.033
Campbell JP, Ataer-Cansizoglu E, Bolon-Canedo V, et al. Imaging and Informatics in ROP (i-ROP) Research Consortium. Expert Diagnosis of Plus Disease in Retinopathy of Prematurity From Computer-Based Image Analysis. JAMA Ophthalmol. 2016;134(6):651-7. PMID: 27077667; https://doi.org/10.1001/jamaophthalmol.2016.0611
Abràmoff MD, Tobey D, Char DS. Lessons Learned About Autonomous AI: Finding a Safe, Efficacious, and Ethical Path Through the Development Process. Am J Ophthalmol. 2020;214:134-42. PMID: 32171769; https://doi.org/10.1016/j.ajo.2020.02.022
Chiang MF, Sommer A, Rich WL, Lum F, Parke DW 2nd. The 2016 American Academy of Ophthalmology IRIS® Registry (Intelligent Research in Sight) Database: Characteristics and Methods. Ophthalmology. 2018;125(8):1143-1148. PMID: 29342435; https://doi.org/10.1016/j.ophtha.2017.12.001
Faes L, Liu X, Wagner SK, et al. A Clinician’s Guide to Artificial Intelligence: How to Critically Appraise Machine Learning Studies. Transl Vis Sci Technol. 2020;9(2):7. PMID: 32704413; https://doi.org/10.1167/tvst.9.2.7
Cruz Rivera S, Liu X, Chan AW, et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Nat Med. 2020;26(9):1351-63. PMID: 32908284; https://doi.org/10.1038/s41591-020-1037-7
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.