Correlação dos indicadores antropométricos em identificar a sensibilidade e resistência insulínicas

Autores

  • Lívia Nascimento Matos Hospital do Servidor Público Estadual de São Paulo “Francisco Morato de Oliveira”
  • Guilherme de Vieira Giorelli Hospital do Servidor Público Estadual de São Paulo “Francisco Morato de Oliveira”
  • Cristiane Bitencourt Dias Hospital do Servidor Público Estadual de São Paulo “Francisco Morato de Oliveira”

Palavras-chave:

Resistência à insulina, Estado pré-diabético, Hiperglicemia, Índice de massa corporal, Circunferência da cintura, Antropometria

Resumo

CONTEXTO E OBJETIVOS: A detecção precoce da redução na sensibilidade à insulina (SI) e resistência insulínica (RI) é desejável. O objetivo foi avaliar a correlação dos indicadores antropométricos em identificar a SI e RI, determinando os pontos de corte dos mais eficazes. TIPO DE ESTUDO E LOCAL: Estudo transversal na cidade de São Paulo. MÉTODOS: Analisou-se 61 indivíduos com glicemia de jejum normal (GJN) e 43 mulheres com sobrepeso. Determinou-se: índice de massa corporal (IMC), circunferência abdominal (CA), relação cintura quadril, relação cintura estatura (RCE), índice de conicidade e os índices HOMA-IS e HOMA-IR. As correlações entre os indicadores antropométricos e SI e RI foram determinadas. Análise ROC foi empregada com determinação das áreas abaixo da curva (AUC) e pontos de corte. RESULTADOS: No grupo de indivíduos com GJN, demonstraram correlação com o HOMA-IS (homeostasis model assessment of insulin sensitivity), o IMC (r = -0,50; P = 0,002) e RCE (= -0,45; P = 0,007). A curva ROC demonstrou significância estatística para IMC (AUC = 0,769; P = 0,005), RCE (AUC = 0,764; P = 0,01) e CA (AUC = 0,702; P = 0,04); os melhores pontos de corte foram 33,3 kg/m2 , 0,67 e 100 cm, respectivamente. Entre mulheres com sobrepeso, as melhores correlações com o HOMA-IR foram demonstradas pela RCE (r = 0,37; P = 0,01), e o melhor ponto de corte foi 0,70 (AUC = 0,61; P = 0,25). CONCLUSÃO: Os indicadores mais promissores para indicar SI em indivíduos com GJN foram IMC, RCE e CA. Entre mulheres com sobrepeso, RCE demonstrou maior correlação com a RI.

Downloads

Não há dados estatísticos.

Biografia do Autor

Lívia Nascimento Matos, Hospital do Servidor Público Estadual de São Paulo “Francisco Morato de Oliveira”

MD. Postgraduate student, Department of Internal Medicine, Institute for Medical Treatment, Hospital do Servidor Público Estadual de São Paulo – Francisco Morato de Oliveira, São Paulo, Brazil.

Guilherme de Vieira Giorelli, Hospital do Servidor Público Estadual de São Paulo “Francisco Morato de Oliveira”

MD. Postgraduate student, Department of Internal Medicine, Institute for Medical Treatment, Hospital do Servidor Público Estadual de São Paulo – Francisco Morato de Oliveira, São Paulo, Brazil.

Cristiane Bitencourt Dias, Hospital do Servidor Público Estadual de São Paulo “Francisco Morato de Oliveira”

MD, PhD. Attending Physician, Department of Internal Medicine, Institute for Medical Treatment, Hospital do Servidor Público Estadual de São Paulo – Francisco Morato de Oliveira, São Paulo, Brazil.

Referências

Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047-53.

Harris MI, Klein R, Welborn TA, Knuiman MW. Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis. Diabetes Care. 1992;15(7):815-9.

Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK. Cardiovascular risk factors in confirmed prediabetic individuals. Does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA. 1990;263(21):2893-8.

UK Prospective Diabetes Study 6. Complications in newly diagnosed type 2 diabetic pa- tients and their association with different clinical and biochemical risk factors. Diabetes Res. 1990;13(1):1-11.

Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis of Diagnostic criteria in Europe. Lancet. 1999;354(9179):617-21.

DECODE Study Group, the European Diabetes Epidemiology Group. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch Intern Med. 2001;161(3):397-405.

Pan XR, Li GW, Hu YH, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537-44.

Tuomilehto J, Lindström J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343-50.

Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabe- tes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393-403.

Abdul-Ghani MA, Jenkinson CP, Richardson DK, Tripathy D, DeFronzo RA. Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: results from the Veterans Administration Genetic Epidemiology Study. Diabetes. 2006;55(5):1430-5.

Faerch K, Vaag A, Holst JJ, et al. Natural history of insulin sensitivity and insulin secretion in the progression from normal glucose tolerance to impaired fasting glycemia and impaired glucose tolerance: the Inter99 study. Diabetes Care. 2009;32(3):439-44.

Chang SA, Kim HS, Yoon KH, et al. Body mass index is the most important determining factor for the degree of insulin resistance in non-obese type 2 diabetic patients in Korea. Metabolism. 2004;53(2):142-6.

Ybarra J, Sanchez-Hernandez J, Pou JM, et al. Anthropometrical measures are easily obtainable sensitive and specific predictors of insulin resistance in healthy individuals. Prevention and Control. 2005;1(2):175-81. Available from: http://www.journals.elsevierhealth.com/periodi- cals/precon/article/S1573-2088(05)00034-6/abstract. Accessed in 2010 (Nov 4).

Pitanga FJG, Lessa I. Indicadores antropométricos de obesidade como instrumento de tria- gem para risco coronariano elevado em adultos na cidade de Salvador – Bahia [Anthropo- metric indexes of obesity as an instrument of screening for high coronary risk in adults in the city of Salvador-Bahia]. Arq Bras Cardiol. 2005;85(1):26-31.

Ho SY, Lam TH, Janus ED; Hong Kong Cardiovascular Risk Factor Prevalence Study Steering Committee. Waist to stature ratio is more strongly associated with cardiovascular risk factors than other simple anthropometric indices. Ann Epidemiol. 2003;13(10):683-91.

Valdez R, Seidell JC, Ahn YI, Weiss KM. A new index of abdominal adiposity as an indicator of risk for cardiovascular disease. A cross-population study. Int J Obes Relat Metab Disord. 1993;17(2):77-82.

Sherwin RS. Diabetes mellitus. In: Goldman L, Ausiello D, editors. Cecil Text Book of Medici- ne. 22nd ed. Rio de Janeiro: Elsevier; 2005. p. 1658-92.

Wilmore JH. Body composition in sport and exercise: directions for future research. Med Sci Sports Exerc. 1983;15(1):21-31.

National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143-421.

Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206-52.

Pouliot MC, Després JP, Lemieux S, et al. Waist circumference and abdominal sagittal diame- ter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol. 1994;73(7):460-8.

Vasques ACJ, Rosado LEFPL, Alfenas RCG, Geloneze B. Análise crítica do uso dos índices do Homeostasis Model Assessment (HOMA) na avaliação da resistência à insulina e capaci- dade funcional das células-beta pancreáticas: [revisão] [Critical analysis on the use of the homeostasis model assessment (HOMA) indexes in the evaluation of the insulin resistance and the pancreatic beta cells functional capacity: [review]]. Arq Bras Endocrinol Metabol. 2008;52(1):32-9.

Geloneze B, Vasques ACJ, Stabe CFC, et al. Índices HOMA1-IR e HOMA2-IR para identifica- ção de resistência à insulina e síndrome metabólica: Estudo Brasileiro de Síndrome Me- tabólica (BRAMS) [HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS)]. Arq Bras Endocrinol Metabol. 2009;53(2):281-7.

Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characte- ristic curves derived from the same cases. Radiology. 1983;148(3):839-43.

Rodrigues SL, Baldo MP, Sá Cunha R, et al. Anthropometric measures of increased cen- tral and overall adiposity in association with echocardiographic left ventricular hypertrophy. Hypertens Res. 2010;33(1):83-7.

Zhou Z, Hu D, Chen J. Association between obesity indices and blood pressure or hyperten- sion: which index is the best? Public Health Nutr. 2009;12(8):1061-71.

Decoda Study Group, Nyamdorj R, Qiao Q, et al. BMI compared with central obesi- ty indicators in relation to diabetes and hypertension in Asians. Obesity (Silver Spring). 2008;16(7):1622-35.

Nyamdorj R, Qiao Q, Söderberg S, et al. Comparison of body mass index with waist circumfe- rence, waist-to-hip ratio, and waist-to-stature ratio as a predictor or hypertension incidence in Mauritius. J Hypertens. 2008;26(5):866-70.

Vasques ACJ, Rosado LEFPL, Rosado GP, et al. Habilidade de indicadores antropométricos e de composição corporal em identificar a resistência à insulina [Predictive ability of anthro- pometric and body composition indicators in the identification of insulin resistance]. Arq Bras Endocrinol Metabol. 2009;53(1):72-9.

Ohlson LO, Larsson B, Svärdsudd K, et al. The influence of body fat distribution on the inci- dence of diabetes mellitus. 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes. 1985;34(10):1055-8.

Prineas RJ, Folsom AR, Kaye SA. Central adiposity and increased risk of coronary artery disease mortality in older women. Ann Epidemiol. 1993;3(1):35-41.

Rexrode KM, Carey VJ, Hennekens CH, et al. Abdominal adiposity and coronary heart disea- se in women. JAMA. 1998;280(21):1843-8.

Snijder MB, van Dam RM, Visser M, Seidell JC. What aspects of body fat are particularly hazardous and how do we measure them? Int J Epidemiol. 2006;35(1):83-92.

Goodpaster BH, Krishnaswami S, Resnick H, et al. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care. 2003;26(2):372-9.

Boyko EJ, Fujimoto WY, Leonetti DL, Newell-Morris L. Visceral adiposity and risk of type 2 dia- betes: a prospective study among Japanese Americans. Diabetes Care. 2000;23(4):465- 71.

Lean ME, Han TS, Morrison CE. Waist circumference as a measure for indicating need for weight management. BMJ. 1995;311(6998):158-61.

Hsieh SD, Yoshinaga H. Do people with similar waist circumference share similar health risks irrespective of height? Tohoku J Exp Med. 1999;188(1):55-60.

Downloads

Publicado

2011-01-01

Como Citar

1.
Matos LN, Giorelli G de V, Dias CB. Correlação dos indicadores antropométricos em identificar a sensibilidade e resistência insulínicas. Sao Paulo Med J [Internet]. 1º de janeiro de 2011 [citado 12º de março de 2025];129(1):30-5. Disponível em: https://periodicosapm.emnuvens.com.br/spmj/article/view/1555

Edição

Seção

Artigo Original