Genes de reparo de DNA na síndrome de Lynch
uma revisão
Palavras-chave:
Síndrome de Lynch, Câncer colorretal hereditário sem polipose, Reparo de DNA, Mutação, CâncerResumo
A síndrome de Lynch representa de 1-7% de todos os casos de câncer colorretal. É uma síndrome de herança autossômica dominante que predispõe ao câncer e é causada por mutações nos genes de reparo de ácido desoxirribonucléico (DNA). Desde a descoberta dos principais genes com função de reparo de DNA, mutações nos genes MSH2, MLH1, MSH6, PMS2 e PMS1 estão relacionadas com a susceptibilidade à síndrome de Lynch. Outro gene, MLH3, tem sido proposto como tendo papel na predisposição à síndrome de Lynch, porém mutações de significância clínica nesse gene não são claras. De acordo com o banco de dados InSiGHT (International Society for Gastrointestinal Hereditary Tumors), aproximadamente 500 diferentes mutações associadas à síndrome de Lynch são conhecidas, envolvendo primeiramente MLH1 (50%), MSH2 (40%) e outros (10%). Grandes progressos têm ocorrido para nosso entendimento das bases moleculares da síndrome de Lynch. A caracterização molecular será a forma mais precisa para definirmos a síndrome de Lynch e irá fornecer informações preditivas mais precisas sobre o risco de câncer colorretal e extra-colônico, além de permitir regimes otimizados de manejo.
Downloads
Referências
Lynch HT, Smyrk TC, Watson P, et al. Genetics, natural history, tumor spectrum, and pa- thology of hereditary nonpolyposis colorectal cancer: an update review. Gastroenterology. 1993;104(5):1535-49.
Marra G, Boland CR. Hereditary nonpolyposis colorectal cancer: the syndrome, the genes, and historical perspectives. J Natl Cancer Inst. 1995;87(15):1114-25.
Lynch HT, Smyrk T, Lynch J. An update of HNPCC (Lynch syndrome). Cancer Genet Cytogenet. 1997;93(1):84-99.
Jass JR. Hereditary Non-Polyposis Colorectal Cancer: the rise and fall of a confusing term. World J Gastroenterol. 2006;12(31):4943-50.
Lynch HT, Watson P, Kriegler M, et al. Differential diagnosis of hereditary nonpolypo- sis colorectal cancer (Lynch syndrome I and Lynch syndrome II). Dis Colon Rectum. 1988;31(5):372-7.
Vasen HF, Mecklin JP, Khan PM, Lynch HT. The International Collaborative Group on Heredita- ry Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum. 1991;34(5):424-5.
Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116(6):1453-6.
Peltomäki P, Vasen HF. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology. 1997;113(4):1146-58.
de la Chapelle A. The incidence of Lynch syndrome. Fam Cancer. 2005;4(3):233-7.
Papp J, Kovacs ME, Olah E. Germline MLH1 and MSH2 mutational spectrum including fre- quent large genomic aberrations in Hungarian hereditary non-polyposis colorectal cancer families: implications for genetic testing. World J Gastroenterol. 2007;13(19):2727-32.
Hendriks YM, de Jong AE, Morreau H, et al. Diagnostic approach and management of Lynch syndrome (hereditary nonpolyposis colorectal carcinoma): a guide for clinicians. CA Cancer J Clin. 2006;56(4):213-25.
Alonso A, Moreno S, Valiente A, Artigas M, Pérez-Juana A, Ramos-Arroyo MA. Mecanismos ge- néticos en la predisposición hereditaria al cáncer colorrectal. [Genetic mechanisms in the hereditary predisposition to colorectal cancer]. An Sist Sanit Navar. 2006;29(1):59-76.
Iyer RR, Pluciennik A, Burdett V, Modrich PL. DNA mismatch repair: functions and mechanis- ms. Chem Rev. 2006;106(2):302-23.
Modrich P. Mechanisms in eukaryotic mismatch repair. J Biol Chem. 2006;281(41): 30305-9.
Peltomäki P. Lynch syndrome genes. Fam Cancer. 2005;4(3):227-32.
Kolodner RD, Marsischky GT. Eukaryotic DNA mismatch repair. Curr Opin Genet Dev. 1999;9(1):89-96.
Jiricny J. Mediating mismatch repair. Nat Genet. 2000;24(1):6-8.
Iaccarino I, Marra G, Palombo F, Jiricny J. hMSH2 and hMSH6 play distinct roles in mis- match binding and contribute differently to the ATPase activity of hMutSalpha. EMBO J. 1998;17(9):2677-86.
Huang J, Kuismanen SA, Liu T, et al. MSH6 and MSH3 are rarely involved in genetic predis- position to nonpolypotic colon cancer. Cancer Res. 2001;61(4):1619-23.
Ohmiya N, Matsumoto S, Yamamoto H, Baranovskaya S, Malkhosyan SR, Perucho M. Ger- mline and somatic mutations in hMSH6 and hMSH3 in gastrointestinal cancers of the microsatellite mutator phonotype. Gene. 2001;272(1-2):301-13.
Loukola A, Vilkki S, Singh J, Launonen V, Aaltonen LA. Germline and somatic mutation analy- sis of MLH3 in MSI-positive colorectal cancer. Am J Pathol. 2000;157(2):347-52.
Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260(5109):816-9.
Peltomäki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol. 2003;21(6):1174-9.
Peltomäki P, Vasen H. Mutations associated with HNPCC predisposition -- Update of ICG- HNPCC/INSiGHT mutation database. Dis Markers. 2004;20(4-5):269-76.
Park YJ, Shin KH, Park JG. Risk of gastric cancer in hereditary nonpolyposis colorectal cancer in Korea. Clin Cancer Res. 2000;6(8):2994-8.
Oliveira Ferreira F, Napoli Ferreira CC, Rossi BM, et al. Frequency of extra-colonic tumors in hereditary nonpolyposis colorectal cancer (HNPCC) and familial colorectal cancer (FCC) Brazilian families: An analysis by a Brazilian Hereditary Colorectal Cancer Institutional Re- gistry. Fam Cancer. 2004;3(1):41-7.
Grady WM. Molecular basis for subdividing hereditary colon cancer? Gut. 2005;54(12): 1676-8.
Liu B, Parsons R, Papadopoulos N, et al. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med. 1996;2(2):169-74.
Wijnen J, Khan PD, Vasen H, et al. Hereditary nonpolyposis colorectal cancer families not complying with the Amsterdam criteria show extremely low frequency of mismatch-repair- gene mutations. Am J Hum Genet. 1997;61(2):329-35.
Wu Y, Berends MJ, Mensink RG, et al. Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline muta- tions. Am J Hum Genet. 1999;65(5):1291-8.
Wijnen J, de Leeuw W, Vasen H, et al. Familial endometrial cancer in female carriers of MSH6 germline mutations. Nat Genet. 1999;23(2):142-4.
Akiyama M, Sato H, Yamada T, et al. Germ-line mutation of the hMSH6/GTBP gene in an atypi- cal hereditary nonpolyposis colorectal cancer kindred. Cancer Res. 1997;57(18):3920-3.
Plaschke J, Kruppa C, Tischler R, et al. Sequence analysis of the mismatch repair gene hMSH6 in the germline of patients with familial and sporadic colorectal cancer. Int J Cancer. 2000;85(5):606-13.
Kolodner RD, Tytell JD, Schmeits JL, et al. Germ-line msh6 mutations in colorectal cancer families. Cancer Res. 1999;59(20):5068-74.
Nakagawa H, Lockman JC, Frankel WL, et al. Mismatch repair gene PMS2: disease-causing germline mutations are frequent in patients whose tumors stain negative for PMS2 pro- tein, but paralogous genes obscure mutation detection and interpretation. Cancer Res. 2004;64(14):4721-7.
Rossi BM, Lopes A, Oliveira Ferreira F, et al. hMLH1 and hMSH2 gene mutation in Brazi- lian families with suspected hereditary nonpolyposis colorectal cancer. Ann Surg Oncol. 2002;9(6):555-61.
Lynch HT, Watson P, Shaw TG, et al. Clinical impact of molecular genetic diagnosis, genetic counseling, and management of hereditary cancer. Part I: Studies of cancer in families. Cancer. 1999;86(11 Suppl):2449-56.
Nicolaides NC, Papadopoulos N, Liu B, et al. Mutations of two PMS homologues in heredi- tary nonpolyposis colon cancer. Nature. 1994;371(6492):75-80.
Hamilton SR, Liu B, Parsons RE, et al. The molecular basis of Turcot’s syndrome. N Engl J Med. 1995;332(13):839-7.
Miyaki M, Nishio J, Konishi M, et al. Drastic genetic instability of tumors and normal tissues in Turcot syndrome. Oncogene. 1997;15(23):2877-81.
De Rosa M, Fasano C, Panariello L, et al. Evidence for a recessive inheritance of Turcot’s syndrome caused by compound heterozygous mutations within the PMS2 gene. Oncogene. 2000;19(13):1719-23.
Knudson AG. Antioncogenes and human cancer. Proc Natl Acad Sci U S A. 1993;90(23): 10914-21.
Hendriks YM, Jagmohan-Changur S, van der Klift HM, et al. Heterozygous mutations in PMS2 cause hereditary nonpolyposis colorectal carcinoma (Lynch syndrome). Gastroenterology. 2006;130(2):312-22.
Nakagawa H, Hampel H, de la Chapelle A. Identification and characterization of genomic rearrangements of MSH2 and MLH1 in Lynch syndrome (HNPCC) by novel techniques. Hum Mutat. 2003;22(3):258.
Ainsworth PJ, Koscinski D, Fraser BP, Stuart JA. Family cancer histories predictive of a high risk of hereditary non-polyposis colorectal cancer associate significantly with a genomic rearrangement in hMSH2 or hMLH1. Clin Genet. 2004;66(3):183-8.
Zhang J, Lindroos A, Ollila S, et al. Gene conversion is a frequent mechanism of inactiva- tion of the wild-type allele in cancers from MLH1/MSH2 deletion carriers. Cancer Res.2006;66(2):659-64.
Pistorius S, Görgens H, Plaschke J, et al. Genomic rearrangements in MSH2, MLH1 or MSH6 are rare in HNPCC patients carrying point mutations. Cancer Lett. 2007;248(1):89-95.
Baudhuin LM, Ferber MJ, Winters JL, et al. Characterization of hMLH1 and hMSH2 gene dosage alterations in Lynch syndrome patients. Gastroenterology. 2005;129(3):846-54.
Bunyan DJ, Eccles DM, Sillibourne J, et al. Dosage analysis of cancer predisposition genes by multiplex ligation-dependent probe amplification. Br J Cancer. 2004;91(6):1155-9.
Grabowski M, Mueller-Koch Y, Grasbon-Frodl E, et al. Deletions account for 17% of patho- genic germline alterations in MLH1 and MSH2 in hereditary nonpolyposis colorectal cancer (HNPCC) families. Genet Test. 2005;9(2):138-46.
Wang Y, Friedl W, Lamberti C, et al. Hereditary nonpolyposis colorectal cancer: fre- quent occurrence of large genomic deletions in MSH2 and MLH1 genes. Int J Cancer. 2003;103(5):636-41.
Wagner A, Barrows A, Wijnen JT, et al. Molecular analysis of hereditary nonpolyposis colo- rectal cancer in the United States: high mutation detection rate among clinically selected families and characterization of an American founder genomic deletion of the MSH2 gene. Am J Hum Genet. 2003;72(5):1088-100.
Gille JJ, Hogervorst FB, Pals G, et al. Genomic deletions of MSH2 and MLH1 in co- lorectal cancer families detected by a novel mutation detection approach. Br J Cancer. 2002;87(8):892-7.
Wijnen J, van der Klift H, Vasen H, et al. MSH2 genomic deletions are a frequent cause of HNPCC. Nat Genet. 1998;20(4):326-8.
Shin KH, Shin JH, Kim JH, Park JG. Mutational analysis of promoters of mismatch repair genes hMSH2 and hMLH1 in hereditary nonpolyposis colorectal cancer and early onset colorectal cancer patients: identification of three novel germ-line mutations in promoter of the hMSH2 gene. Cancer Res. 2002;62(1):38-42.
Gazzoli I, Loda M, Garber J, Syngal S, Kolodner RD. A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability- high tumor. Cancer Res. 2002;62(14):3925-8.
Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev. 1993;3(2):226-31.
Rountree MR, Bachman KE, Herman JG, Baylin SB. DNA methylation, chromatin inheritance, and cancer. Oncogene. 2001;20(24):3156-65.
Miyakura Y, Sugano K, Akasu T, et al. Extensive but hemiallelic methylation of the hMLH1 promoter region in early-onset sporadic colon cancers with microsatellite instability. Clin Gastroenterol Hepatol. 2004;2(2):147-56.
Suter CM, Martin DI, Ward RL. Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet. 2004;36(5):497-501.
Hitchins MP, Wong JJ, Suthers G, et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med. 2007;356(7):697-705.
Hitchins M, Williams R, Cheong K, et al. MLH1 germline epimutations as a factor in heredi- tary nonpolyposis colorectal cancer. Gastroenterology. 2005;129(5):1392-9.
Lynch HT, de la Chapelle A. Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet. 1999;36(11):801-18.
Hendriks YM, Wagner A, Morreau H, et al. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology. 2004;127(1):17-25.
Beck NE, Tomlinson IP, Homfray T, Hodgson SV, Harocopos CJ, Bodmer WF. Genetic testing is important in families with a history suggestive of hereditary non-polyposis colorectal cancer even if the Amsterdam criteria are not fulfilled. Br J Surg. 1997;84(2):233-7.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.