Efeito do controle metabólico na proliferação in vitro de células mononucleares de sangue periférico de pacientes diabéticos tipo 1 e 2
Palavras-chave:
Cultura de células, Ativação linfocítica, Diabetes mellitus tipo I, Diabetes mellitus tipo II, Hiperglicemia, InfecçãoResumo
CONTEXTO E OBJETIVO: Diabetes mellitus é uma síndrome clínica que freqüentemente leva ao desenvolvimento de complicações crônicas, e também, alta susceptibilidade a infecções, provavelmente devido a um defeito na defesa imunológica, que pode ser relacionada ao controle metabólico da doença. Neste estudo, propomos avaliar o efeito do controle metabólico no comportamento imunocelular de pacientes diabéticos tipo 1 e 2 através da proliferação in vitro de células mononucleares de sangue periférico (PBMC) em pacientes com controle metabólico inadequado e adequado. TIPO DE ESTUDO E LOCAL: Estudo experimental e laboratorial, realizado em hospital universitário. MÉTODOS: Estudamos 11 diabéticos do tipo 1 e 13 do tipo 2 além de 21 controles saudáveis, divididos em dois grupos (11/10), pareados para sexo e idade aos diabéticos tipo 1 e 2. Usamos culturas de PBMCs estimuladas com concanavalina (Con-A) para medir a incorporação de 3H-timidina após 72 horas de cultura de células. As culturas foram realizadas no primeiro dia de internação para os pacientes em controle metabólico inadequado, e repetidas após o controle metabólico adequado. RESULTADOS: O índice de estimulação das culturas estimuladas com Con-A nos diabéticos tipo 1 foi significantemente maior que na cultura de indivíduos saudáveis e diabéticos tipo 2, independentemente do controle metabólico. Além disso, foi observada uma correlação negativa entre o índice de proliferação e o índice de massa corporal e níveis de proteína-C. CONCLUSÃO: O aumento na capacidade de proliferação de linfócitos de diabéticos tipo 1 não é causado por hiperglicemia e/ou insulinopenia relacionada a controle inadequado.
Downloads
Referências
The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-depen- dent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14):977-86.
Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837-53.
Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):854-65.
Joshi N, Caputo GM, Weitekamp MR, Karchmer AW. Infections in patients with diabetes mellitus. N Engl J Med. 1999;341(25):1906-12.
Shah BR, Hux JE. Quantifying the risk of infectious diseases for people with diabetes. Diabetes Care. 2003;26(2):510-3.
McMahon MM, Bistrian BR. Host defenses and susceptibility to infection in patients with diabetes mellitus. Infect Dis Clin North Am. 1995;9(1):1-9.
Leibovici L, Yehezkelli Y, Porter A, Regev A, Krauze I, Hardell D. Influence of diabetes mellitus and glycaemic control on the characteristics and outcome of common infections. Diabet Med. 1996;13(5):457-63.
Golden SH, Peart-Vigilance C, Kao WH, Brancati FL. Perioperative glycemic control and the risk of infectious com- plication in a cohort of adults with diabetes. Diabetes Care. 1999;22(9):1408-14.
Savin JA. Bacterial infections in diabetes mellitus. Br J Dermatol. 1974;91(4):481-4.
Rodrigues DC, Taba MJ, Novaes AB, Souza SL, Grisi MF. Effect of non-surgical periodontal therapy on glycemic con- trol in patients with type 2 diabetes mellitus. J Periodontol. 2003;74(9):1361-7.
Bybee JD, Rogers DE. The phagocytic activity of polymorpho- nuclear leukocytes obtained from patients with diabetes mellitus. J Lab Clin Med. 1964;64:1-13.
Bagdade JD, Nielson KL, Bulger RJ. Reversible abnormalities in phagocytic function in poorly controlled diabetic patients. Am J Med Sci. 1972;263(6):451-6.
Stevens DL, Bryant AE, Huffman J, Thompson K, Allen RC. Analysis of circulating phagocyte activity measured by whole blood luminescence: correlations with clinical status. J Infect Dis. 1994;170(6):1463-72.
Saeed FA, Castle GE. Neutrophil chemiluminescence dur- ing phagocytosis is inhibited by abnormally elevated levels of acetoacetate: implications for diabetic susceptibility to infection. Clin Diagn Lab Immunol. 1998;5(5):740-3.
Gallacher SJ, Thomson G, Fraser WD, Fisher BM, Gemmell CG, MacCuish AC. Neutrophil bactericidal function in diabetes mellitus: evidence for association with blood glucose control. Diabet Med. 1995;12(10):916-20.
Delamaire M, Maugendre D, Moreno M, Le Goff MC, Allannic H, Genetet B. Impaired leucocyte functions in diabetic patients. Diabet Med. 1997;14(1):29-34.
Dolkart RE, Halpern B, Perlman J. Comparison of antibody responses in normal and alloxan diabetic mice. Diabetes. 1971;20(3):162-7.
Mahmoud AA, Rodman HM, Mandel MA, Warren KS. Induced and spontaneous diabetes mellitus and suppression of cell-mediated immunological responses. Granuloma formation, delayed dermal reactivity and allograft rejection. J Clin Invest. 1976;57(2):362-7.
Foss NT, de Oliveira EB, Silva CL. Correlation between TNF production, increase of plasma C-reactive protein level and suppression of T lymphocyte response to concanavalin A during erythema nodosum leprosum. Int J Lepr Other Mycobact Dis. 1993;61(2):218-26.
Reinhold D, Ansorge S, Schleicher ED. Elevated glucose levels stimulate transforming growth factor-beta 1 (TGF-beta 1), suppress interleukin IL-2, IL-6 and IL-10 production and DNA synthesis in peripheral blood mononuclear cells. Horm Metab Res. 1996;28(6):267-70.
Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FESM Immunol Med Microbiol. 1999;26(3-4):259-65.
Moutschen MP, Scheen AJ, Lefebvre PJ. Impaired immune responses in diabetes mellitus: analysis of the factors and mechanisms involved. Relevance to the increased susceptibil- ity of diabetic patients to specific infections. Diabete Metab. 1992;18(3):187-201.
Stentz FB, Umpierrez GE, Cuervo R, Kitabchi AE. Proinflam- matory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes. 2004;53(8):2079-86.
Dandona P, Aljada A, Mohanty P. The anti-inflammatory and potential anti-atherogenic effect of insulin: a new paradigm. Diabetologia. 2002;45(6):924-30.
Herman A, Kappler JW, Marrack P, Pullen AM. Superantigens: mechanism of T-cell stimulation and role in immune responses. Annu Rev Immunol. 1991;9:745-72.
Webb S, Morris C, Sprent J. Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity. Cell. 1990;63(6):1249-56.
McCormack JE, Callahan JE, Kappler J, Marrack PC. Profound deletion of mature T-cells in vivo by chronic exposure to exog- enous superantigen. J Immunol. 1993;150(9):3785-92.
Kawabe Y, Ochi A. Programmed cell death and extrathymic reduction of Vbeta8+ CD4+ T cells in mice tolerant to Staphylo- coccus aureus enterotoxin B. Nature. 1991;349(6306):245-8.
Marrack P, Mitchell T, Bender J, et al. T-cell survival. Immunol Rev. 1998;165:279-85.
Gonzalo JA, Moreno de Alborán I, Alés-Martínez JE, Martínez C, Kroemer G. Expansion and clonal deletion of peripheral T cells induced by bacterial superantigen is independent of the interleukin-2 pathway. Eur J Immunol. 1992;22(4):1007-11.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.