The relationship of host immune cells, cytokine and nitric oxide production to tumor cells in ovarian carcinoma
Palavras-chave:
Ovarian carcinoma, Tumor-associated mononuclear cells, Cytokines, Nitric oxideResumo
OBJETIVOS: Analisar a complexa relação entre as células mononucleares associadas ao tumor (TAMs) e as células neoplásicas, sendo resumidos sua competência imunológica, perfil da produção de citocinas e de óxido nítrico (NO) no microambiente tumoral, com aspectos atuais de como a produção desses mediadores poderia afetar o crescimento tumoral. ORIGEM DOS DADOS: Os dados foram obtidos de artigos indexados através da rede Medline durante os últimos 10 anos. As palavras-chave utilizadas na pesquisa foram basicamente: câncer, carcinoma ovariano, citocina, óxido nítrico, células mononucleares, linfócito, macrófago. SELEÇÃO DOS ESTUDOS E COLETA DOS DADOS: Foram revistos 30 trabalhos contendo dados relacionados à produção de citocinas e NO por TAMs e/ou células neoplásicas e que tentaram estabelecer uma correlação entre a produção desses mediadores e o crescimento tumoral, particularmente no carcinoma ovariano. RESUMO DOS DADOS: As TAMs consistem principalmente de macrófagos e linfócitos T que apresentam baixo índice proliferativo e baixa citotoxicidade comparada aos monócitos autólogos do sangue, embora sejam capazes de liberar várias citocinas. O perfil da expressão de citocinas poderia ajudar a explicar tanto a deficiência imunológica observada em pacientes com carcinoma em fase avançada como também o potencial das TAMs em exercer atividade antitumoral, o que torna essas células um alvo para intervenção terapêutica. Além das citocinas, o NO também é produzido no microambiente tumoral. Várias observações em animais sugerem um papel tumoricida para o NO, mas em tumores humanos seu papel não foi estabelecido podendo ser alterado durante a progressão do tumor.
Downloads
Referências
Mantovani A. Biology of disease. Tumor-associated macrophages in neoplastic progression: a paradigm for the in vivo function of chemokines. Laboratory Invest 1994;71(1):5-16.
Negus RPM, Stamp GWH, Hadley J, Balkwill FR. Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am J Pathol 1997;150:1723-34.
Mantovani G, Macciň A, Pisano M, et al. Tumor-associated lympho-monocytes from neoplastic effusions are immunologically defective in comparison with patient autologous PBMCs but are capable of releasing high amounts of various cytokines. Int J Cancer 1997;71:724-31.
Rabinowich H, Suminami Y, Reichert TE, et al. Expression of cytokine genes or proteins and signalling molecules in lymphocytes associated with human ovarian carcinoma. Int J Cancer 1996;68:276-84.
Bernasconi S, Matteucci C, Sironi M, et al. Effects of granulocyte-monocyte colony-stimulating factor (GM-CSF) on expression of adhesion molecules and production of cytokines in blood monocytes and ovarian cancer-associated macrophages. Int J Cancer 1995;60:300-7.
Merogi AJ, Marrogi AJ, Ramesh R, Robinson WR, Fermin CD, Freeman SM. Tumor-host interaction: analysis of cytokines, growth factors, and tumor-infiltrating lymphocytes in ovarian carcinomas. Hum Pathol 1997;28:321-31.
Schondorf T, Engel H, Lindemann C, Kolhagen H, Von Rucker AA, Mallman P. Cellular characteristics of peripheral blood lymphocytes and tumour-infiltrating lymphocytes in patients with gynaecological tumours. Cancer Immunol Immunother 1997;44:88-96.
Melani C, Pupa SM, Stoppacciaro A, et al. An in vivo model to compare human leukocyte infiltration in carcinoma xenografts producing different chemokines. Int J Cancer 1995;62:572-8.
Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L. The origin and function of tumor-associated macrophages. Immunol Today 1992;13(7):265-70.
Goedegebuure PS, Douville CC, Doherty JM, et al. Simultaneous production of T helper-1-like cytokines and cytolytic activity by tumor-specific T cells in ovarian and breast cancer. Cell Immunol 1997;175:150-6.
Negus RPM, Stamp GWH, Relf MG et al. The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest 1995;95:2391-6.
Vitolo D, Zerbe T, Kanbour A, Dahl C, Herberman RB, Whiteside TL. Expression of mRNA for cytokines in tumour-infiltrating mononuclear cells in ovarian adenocarcinoma and invasive breast cancer. Int J Cancer 1992;51:573-80.
Naylor MS, Stamp GWH, Foulkes WD, Eccles D, Balkwill FR. Tumor necrosis factor and its receptors in human ovarian cancer. J Clin Invest 1993;91:2194-2206.
Chatwal VJS, Moochhala SM, Chan STF, Ngoi SS. Nitric oxide and cancer. Medical Hypotheses 1996;46:21-4.
Oshima H, Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutation Res 1994;305:253-64.
Liu RH, Hotchkiss JH. Potential genotoxicity of chronically elevated nitric oxide: a review. Mut Res 1995;339:73-89
Bussolino F, Albini A, Camussi G, et al. Role of soluble mediators in angiogenesis. Eur J Cancer 1996;32A(14):2401-12.
Yim CY, Bastian NR, Smith JC, Hibbs Jr JB, Samlowski WE. Macrophage nitric oxide synthesis delays progression of ultraviolet light-induced murine skin cancers. Cancer Res 1993;53:5507-11.
Farias-Eisner R, Sherman MP, Aeberhard E, Chaudhuri G. Nitric oxide is an important mediator for tumoricidal activity in vivo. Proc Natl Acad Sci 1994;91:9407-11.
Edwards P, Cendan JC, Topping DB, et al. Tumor cell nitric oxide inhibits cell growth in vitro, but stimulates tumorigenesis and experimental lung metastasis in vivo. J Surg Res 1996;63:49-52.
Ambs S, Hussain SP, Harris CC. Interactive effects of nitric oxide and the p53 tumor suppressor gene in carcinogenesis and tumor progression. FASEB J 1997;11:443-8.
Thomsen LL, Lawton FG, Knowles RG, Beesley JE, Riveros-Moreno V, Moncada S. Nitric oxide synthase activity in human gynecological cancer. Cancer Res 1994;54:1352-4.
Xie K, Dong Z, Fidler IJ. Activation of nitric oxide synthase gene for inhibition of cancer metastasis. J Leukoc Biol 1996;59:797-803.
Mills CD, Shearer J, Evans R, Caldwell MD. Macrophage arginine metabolism and the inhibition or stimulation of cancer. J Immunol 1992;149(8):2709-14.
Liew FY. Interactions between cytokines and nitric oxide. Adv Neuroimmunol 1995;5:201-9.
Rojas A, Delgado R, Glaría L, Palacios M. Monocyte chemotactic protein-1 inhibits the induction of nitric oxide synthase in J774 cells. Biochem Biophys Res Commun 1993;196(1):274-9.
Otsuka Y, Nagano K, et al. Inhibition of neutrophil migration by tumor necrosis factor. Ex vivo and in vivo studies in comparison with in vitro effect. J Immunol 1990;145:2639-43.
Hechtman DH, Cybulsky MI, Fuchs HJ, Baker JB, Gimbrone Jr MA. Intravascular IL-8. Inhibitor of polymorphonuclear leukocyte accumulation at sites of acute inflammation. J Immunol 1991;147:883-92.
Cunha FQ, Tamashiro WMSC. Tumour necrosis factor-alpha and interleukin-8 inhibit neutrophil migration in vitro and in vivo. Med Inflamm 1992;1:397-401.
Tavares-Murta BM, Cunha FQ, Ferreira SH. The intravenous administration of tumor necrosis factor alpha, interleukin 8 and macrophage-derived neutrophil chemotactic factor inhibits neutrophil migration by stimulating nitric oxide production. Br J Pharmacol, in press.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.