Three-dimensional computed tomography reconstruction in the era of digital personalized medicine

Autores

Downloads

Não há dados estatísticos.

Biografia do Autor

Eserval Rocha Júnior, Faculdade de Medicina, Universidade de Sao Paulo

MD. Attending Physician, Thoracic Surgery Service, Instituto do Câncer do Estado de São Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR.

Paulo Manuel Pêgo Fernandes, Faculdade de Medicina, Universidade de Sao Paulo

MD, PhD. Full Professor, Thoracic Surgery Program, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR; Director, Scientific Department, Associação Paulista de Medicina (APM), São Paulo (SP), Brazil.

Referências

Hessenbruch A. A brief history of x-rays. Endeavour. 2002;26(4):137-41. PMID: 12535920; https://doi.org/10.1016/s0160-9327(02)01465-5.

Bercovich E, Javitt MC. Medical Imaging: From Roentgen to the Digital Revolution, and Beyond. Rambam Maimonides Med J. 2018;9(4):e0034. PMID: 30309440; https://doi.org/10.5041/RMMJ.10355.

Lell MM, Wildberger JE, Alkadhi H, Damilakis J, Kachelriess M. Evolution in Computed Tomography: The Battle for Speed and Dose. Invest Radiol. 2015;50(9):629-44. PMID: 26135019; https://doi.org/10.1097/RLI.0000000000000172.

Duran AH, Duran MN, Masood I, Maciolek LM, Hussain H. The Additional Diagnostic Value of the Three-dimensional Volume Rendering Imaging in Routine Radiology Practice. Cureus. 2019;11(9):e5579. PMID: 31695998; https://doi.org/10.7759/cureus.5579.

Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics. 1999;19(3):745-64. PMID: 10336201; https://doi.org/10.1148/radiographics.19.3.g99ma14745.

Zhou X. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches. Adv Exp Med Biol. 2020;1213:135-47. PMID: 32030668; https://doi.org/10.1007/978-3-030-33128-3_9.

Lu S, Xin X, Huang W, Li Y. [Progress in clinical application of 3D printed navigational template in orthopedic surgery]. Nan Fang Yi Ke Da Xue Xue Bao. 2020;40(8):1220-4. PMID: 32895187; https://doi.org/10.12122/j.issn.1673-4254.2020.08.22.

Arias E, Huang YH, Zhao L, et al. Virtual Surgical Planning and Three-Dimensional Printed Guide for Soft Tissue Correction in Facial Asymmetry. J Craniofac Surg. 2019;30(3):846-50. PMID: 30817522; https://doi.org/10.1097/SCS.0000000000005204.

Lin HH, Lonic D, Lo LJ. 3D printing in orthognathic surgery - A literature review. J Formos Med Assoc. 2018;117(7):547-58. PMID: 29398097; https://doi.org/10.1016/j.jfma.2018.01.008.

Pugliese L, Marconi S, Negrello E, et al. The clinical use of 3D printing in surgery. Updates Surg. 2018;70(3):381-8. PMID: 30167991; https://doi.org/10.1007/s13304-018-0586-5.

Terra RM, Junior ER. Robotic Left S10 Anatomic Resection with 3D Perioperative Planning. August 2022. https://doi.org/10.25373/ctsnet.20419836.

Chen-Yoshikawa TF, Date H. Update on three-dimensional image reconstruction for preoperative simulation in thoracic surgery. J Thorac Dis. 2016;8(Suppl 3):S295-301. PMID: 27014477; https://doi.org/10.3978/j.issn.2072-1439.2016.02.39.

Johnson PT, Fishman EK, Duckwall JR, Calhoun PS, Heath DG. Interactive three-dimensional volume rendering of spiral CT data: current applications in the thorax. Radiographics. 1998 Jan-Feb;18(1):165-87. PMID: 9460115; https://doi.org/10.1148/radiographics.18.1.9460115.

Rocha Júnior E, Mingarini Terra R, Guerreiro Cardoso PF, et al. Robotic Lung Volume Reduction Surgery With Extracorporeal Membrane Oxygenation. Ann Thorac Surg. 2022:S0003-4975(22)00229-6. PMID: 35216991; https://doi.org/10.1016/j.athoracsur.2022.01.059.

Baste JM, Soldea V, Lachkar S, et al. Development of a precision multimodal surgical navigation system for lung robotic segmentectomy. J Thorac Dis. 2018;10(Suppl 10):S1195-S1204. PMID: 29785294; https://doi.org/10.21037/jtd.2018.01.32.

Sato M, Omasa M, Chen F, et al. Use of virtual assisted lung mapping (VAL-MAP), a bronchoscopic multispot dye-marking technique using virtual images, for precise navigation of thoracoscopic sublobar lung resection. J Thorac Cardiovasc Surg. 2014;147(6):1813-9. PMID: 24485958; https://doi.org/10.1016/j.jtcvs.2013.11.046.

Ujiie H, Yamaguchi A, Gregor A, et al. Developing a virtual reality simulation system for preoperative planning of thoracoscopic thoracic surgery. J Thorac Dis. 2021;13(2):778-83. PMID: 33717550; https://doi.org/10.21037/jtd-20-2197.

Goldsmith I, Evans PL, Goodrum H, Warbrick-Smith J, Bragg T. Chest wall reconstruction with an anatomically designed 3-D printed titanium ribs and hemi-sternum implant. 3D Print Med. 2020;6(1):26. PMID: 32975713; https://doi.org/10.1186/s41205-020-00079-0.

Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):115. PMID: 27769304; https://doi.org/10.1186/s12938-016-0236-4.

Downloads

Publicado

2023-01-05

Como Citar

1.
Rocha Júnior E, Fernandes PMP. Three-dimensional computed tomography reconstruction in the era of digital personalized medicine. Sao Paulo Med J [Internet]. 5º de janeiro de 2023 [citado 14º de março de 2025];141(1):1-3. Disponível em: https://periodicosapm.emnuvens.com.br/spmj/article/view/422

Edição

Seção

Editorial