Could serum total cortisol level at admission predict mortality due to coronavirus disease 2019 in the intensive care unit? A prospective study
Palavras-chave:
COVID-19, Intensive care units, MortalityResumo
BACKGROUND: Critical diseases usually cause hypercortisolemia via activation of the hypothalamic-pituitary-adrenal axis. OBJECTIVES: To investigate the relationship between serum total cortisol level and mortality among coronavirus disease 2019 (COVID-19) patients in the intensive care unit (ICU), at the time of their admission. DESIGN AND SETTING: Prospective study developed in a pandemic hospital in the city of Şırnak, Turkey. METHODS: We compared the serum total cortisol levels of 285 patients (141 COVID-19-negative patients and 144 COVID-19-positive patients) followed up in the ICU. RESULTS: The median cortisol level of COVID-19-positive patients was higher than that of COVID-19 negative patients (21.84 μg/dl versus 16.47 μg/dl; P < 0.001). In multivariate logistic regression analysis, mortality was associated with higher cortisol level (odds ratio: 1.20; 95% confidence interval: 1.08-1.35; P = 0.001). The cortisol cutoff point was 31 μg/dl (855 nmol/l) for predicting mortality among COVID-19-positive patients (area under the curve 0.932; sensitivity 59%; and specificity 95%). Among the COVID-19 positive patients with cortisol level ≤ 31 μg/dl (79%; 114 patients), the median survival was higher than among those with cortisol level > 31 μg/dl (21%; 30 patients) (32 days versus 19 days; log-rank test P < 0.001). CONCLUSION: Very high cortisol levels are associated with severe illness and increased risk of death, among COVID-19 patients in the ICU.
Downloads
Referências
World Health Organization. Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020 Accessed in 2020 (Feb 12).
Téblick A, Peeters B, Langouche L, Van den Berghe G. Adrenal function and dysfunction in critically ill patients. Nat Rev Endocrinol. 2019;15(7):417-27. PMID: 30850749; https://doi.org/10.1038/s41574-019-0185-7.
Widmer IE, Puder JJ, König C, et al. Cortisol response in relation to the severity of stress and illness. J Clin Endocrinol Metab. 2005;90(8):4579-86. PMID: 15886236; https://doi.org/10.1210/jc.2005-0354.
Marik PE, Zaloga GP. Adrenal insufficiency in the critically ill: a new look at an old problem. Chest. 2002;122(5):1784-96. PMID: 12426284; https://doi.og/10.1378/chest.122.5.1784.
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. PMID: 32142651; https://doi.org/10.1016/j.cell.2020.02.052.
Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444-8. PMID: 32132184; https://doi.org/10.1126/science.abb2762.
Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102-8. PMID: 32282863; https://doi.org/10.1016/j.jpha.2020.03.001.
Grasselli G, Greco M, Zanella A, et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern Med. 2020;180(10):1345-55. PMID: 32667669; https://doi.org/10.1001/jamainternmed.2020.3539.
Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985. PMID: 32444460; https://doi.org/10.1136/bmj.m1985.
Solmaz I, Özçaylak S, Alakuş ÖF, et al. Risk factors affecting ICU admission in COVID-19 patients; Could air temperature be an effective factor? Int J Clin Pract. 2020:e13803. PMID: 33140881; https://doi.org/10.1111/ijcp.13803.
Güner R, Hasanoğlu İ, Kayaaslan B, et al. COVID-19 experience of the major pandemic response center in the capital: results of the pandemic’s first month in Turkey. Turk J Med Sci. 2020;50(8):1801-9. PMID: 32682358; https://doi.org/10.3906/sag-2006-164.
Feng Y, Ling Y, Bai T, et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. Am J Respir Crit Care Med. 2020;201(11):1380-8. PMID: 32275452; https://doi.org/10.1164/rccm.202002-0445OC.
Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20):2052-9. PMID: 32320003; https://doi.org/10.1001/jama.2020.6775. Erratum in: JAMA. 2020 May 26;323(20):2098.
Boonen E, Vervenne H, Meersseman P, et al. Reduced cortisol metabolism during critical illness. N Engl J Med. 2013;368(16):1477-88. PMID: 23506003; https://doi.org/10.1056/NEJMoa1214969.
Mesotten D, Vanhorebeek I, Van den Berghe G. The altered adrenal axis and treatment with glucocorticoids during critical illness. Nat Clin Pract Endocrinol Metab. 2008;4(9):496-505. PMID: 18695699; https://doi.org/10.1038/ncpendmet0921.
Cooper MS, Stewart PM. Corticosteroid insufficiency in acutely ill patients. N Engl J Med. 2003 Feb 20;348(8):727-34. PMID: 12594318; https://doi.org/10.1056/NEJMra020529.
Rivier C, Vale W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature. 1983;305(5932):325-7. PMID: 6312319; https://doi.org/10.1038/305325a0.
Rook GA. Glucocorticoids and immune function. Baillieres Best Pract Res Clin Endocrinol Metab. 1999;13(4):567-81. PMID: 10903815; https://doi.org/10.1053/beem.1999.0044.
Cooper MS, Bujalska I, Rabbitt E, et al. Modulation of 11beta-hydroxysteroid dehydrogenase isozymes by proinflammatory cytokines in osteoblasts: an autocrine switch from glucocorticoid inactivation to activation. J Bone Miner Res. 2001;16(6):1037-44. PMID: 11393780; https://doi.org/10.1359/jbmr.2001.16.6.1037.
Vermes I, Beishuizen A. The hypothalamic-pituitary-adrenal response to critical illness. Best Pract Res Clin Endocrinol Metab. 2001;15(4):495-511. PMID: 11800520; https://doi.org/10.1053/beem.2001.0166.
Rothwell PM, Lawler PG. Prediction of outcome in intensive care patients using endocrine parameters. Crit Care Med. 1995;23(1):78-83. PMID: 8001391; https://doi.org/10.1097/00003246-199501000-00015.
Marx C, Petros S, Bornstein SR, et al. Adrenocortical hormones in survivors and nonsurvivors of severe sepsis: diverse time course of dehydroepiandrosterone, dehydroepiandrosterone sulfate, and cortisol. Crit Care Med. 2003;31(5):1382-8. PMID: 12771606; https://doi.org/10.1097/01.CCM.0000063282.83188.3D.
Tan T, Khoo B, Mills EG, et al. Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol. 2020;8(8):659-60. PMID: 32563278; https://doi.org/10.1016/S2213-8587(20)30216-3.
Bendel S, Karlsson S, Pettilä V, et al. Free cortisol in sepsis and septic shock. Anesth Analg. 2008;106(6):1813-9. PMID: 18499615; https://doi.org/10.1213/ane.0b013e318172fdba.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.