Could serum total cortisol level at admission predict mortality due to coronavirus disease 2019 in the intensive care unit? A prospective study

Autores

Palavras-chave:

COVID-19, Intensive care units, Mortality

Resumo

BACKGROUND: Critical diseases usually cause hypercortisolemia via activation of the hypothalamic-pituitary-adrenal axis. OBJECTIVES: To investigate the relationship between serum total cortisol level and mortality among coronavirus disease 2019 (COVID-19) patients in the intensive care unit (ICU), at the time of their admission. DESIGN AND SETTING: Prospective study developed in a pandemic hospital in the city of Şırnak, Turkey. METHODS: We compared the serum total cortisol levels of 285 patients (141 COVID-19-negative patients and 144 COVID-19-positive patients) followed up in the ICU. RESULTS: The median cortisol level of COVID-19-positive patients was higher than that of COVID-19 negative patients (21.84 μg/dl versus 16.47 μg/dl; P < 0.001). In multivariate logistic regression analysis, mortality was associated with higher cortisol level (odds ratio: 1.20; 95% confidence interval: 1.08-1.35; P = 0.001). The cortisol cutoff point was 31 μg/dl (855 nmol/l) for predicting mortality among COVID-19-positive patients (area under the curve 0.932; sensitivity 59%; and specificity 95%). Among the COVID-19 positive patients with cortisol level ≤ 31 μg/dl (79%; 114 patients), the median survival was higher than among those with cortisol level > 31 μg/dl (21%; 30 patients) (32 days versus 19 days; log-rank test P < 0.001). CONCLUSION: Very high cortisol levels are associated with severe illness and increased risk of death, among COVID-19 patients in the ICU.

Downloads

Não há dados estatísticos.

Biografia do Autor

Mehmet Güven, Şırnak State Hospital

MD. Endocrinologist, Department of Endocrinology and Metabolism, Şırnak State Hospital, Şırnak, Turkey.

Hamza Gültekin, Şırnak State Hospital

MD. Physician, Department of Intensive Care, Şırnak State Hospital, Şırnak, Turkey.

Referências

World Health Organization. Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020 Accessed in 2020 (Feb 12).

Téblick A, Peeters B, Langouche L, Van den Berghe G. Adrenal function and dysfunction in critically ill patients. Nat Rev Endocrinol. 2019;15(7):417-27. PMID: 30850749; https://doi.org/10.1038/s41574-019-0185-7.

Widmer IE, Puder JJ, König C, et al. Cortisol response in relation to the severity of stress and illness. J Clin Endocrinol Metab. 2005;90(8):4579-86. PMID: 15886236; https://doi.org/10.1210/jc.2005-0354.

Marik PE, Zaloga GP. Adrenal insufficiency in the critically ill: a new look at an old problem. Chest. 2002;122(5):1784-96. PMID: 12426284; https://doi.og/10.1378/chest.122.5.1784.

Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. PMID: 32142651; https://doi.org/10.1016/j.cell.2020.02.052.

Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444-8. PMID: 32132184; https://doi.org/10.1126/science.abb2762.

Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102-8. PMID: 32282863; https://doi.org/10.1016/j.jpha.2020.03.001.

Grasselli G, Greco M, Zanella A, et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern Med. 2020;180(10):1345-55. PMID: 32667669; https://doi.org/10.1001/jamainternmed.2020.3539.

Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985. PMID: 32444460; https://doi.org/10.1136/bmj.m1985.

Solmaz I, Özçaylak S, Alakuş ÖF, et al. Risk factors affecting ICU admission in COVID-19 patients; Could air temperature be an effective factor? Int J Clin Pract. 2020:e13803. PMID: 33140881; https://doi.org/10.1111/ijcp.13803.

Güner R, Hasanoğlu İ, Kayaaslan B, et al. COVID-19 experience of the major pandemic response center in the capital: results of the pandemic’s first month in Turkey. Turk J Med Sci. 2020;50(8):1801-9. PMID: 32682358; https://doi.org/10.3906/sag-2006-164.

Feng Y, Ling Y, Bai T, et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. Am J Respir Crit Care Med. 2020;201(11):1380-8. PMID: 32275452; https://doi.org/10.1164/rccm.202002-0445OC.

Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323(20):2052-9. PMID: 32320003; https://doi.org/10.1001/jama.2020.6775. Erratum in: JAMA. 2020 May 26;323(20):2098.

Boonen E, Vervenne H, Meersseman P, et al. Reduced cortisol metabolism during critical illness. N Engl J Med. 2013;368(16):1477-88. PMID: 23506003; https://doi.org/10.1056/NEJMoa1214969.

Mesotten D, Vanhorebeek I, Van den Berghe G. The altered adrenal axis and treatment with glucocorticoids during critical illness. Nat Clin Pract Endocrinol Metab. 2008;4(9):496-505. PMID: 18695699; https://doi.org/10.1038/ncpendmet0921.

Cooper MS, Stewart PM. Corticosteroid insufficiency in acutely ill patients. N Engl J Med. 2003 Feb 20;348(8):727-34. PMID: 12594318; https://doi.org/10.1056/NEJMra020529.

Rivier C, Vale W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature. 1983;305(5932):325-7. PMID: 6312319; https://doi.org/10.1038/305325a0.

Rook GA. Glucocorticoids and immune function. Baillieres Best Pract Res Clin Endocrinol Metab. 1999;13(4):567-81. PMID: 10903815; https://doi.org/10.1053/beem.1999.0044.

Cooper MS, Bujalska I, Rabbitt E, et al. Modulation of 11beta-hydroxysteroid dehydrogenase isozymes by proinflammatory cytokines in osteoblasts: an autocrine switch from glucocorticoid inactivation to activation. J Bone Miner Res. 2001;16(6):1037-44. PMID: 11393780; https://doi.org/10.1359/jbmr.2001.16.6.1037.

Vermes I, Beishuizen A. The hypothalamic-pituitary-adrenal response to critical illness. Best Pract Res Clin Endocrinol Metab. 2001;15(4):495-511. PMID: 11800520; https://doi.org/10.1053/beem.2001.0166.

Rothwell PM, Lawler PG. Prediction of outcome in intensive care patients using endocrine parameters. Crit Care Med. 1995;23(1):78-83. PMID: 8001391; https://doi.org/10.1097/00003246-199501000-00015.

Marx C, Petros S, Bornstein SR, et al. Adrenocortical hormones in survivors and nonsurvivors of severe sepsis: diverse time course of dehydroepiandrosterone, dehydroepiandrosterone sulfate, and cortisol. Crit Care Med. 2003;31(5):1382-8. PMID: 12771606; https://doi.org/10.1097/01.CCM.0000063282.83188.3D.

Tan T, Khoo B, Mills EG, et al. Association between high serum total cortisol concentrations and mortality from COVID-19. Lancet Diabetes Endocrinol. 2020;8(8):659-60. PMID: 32563278; https://doi.org/10.1016/S2213-8587(20)30216-3.

Bendel S, Karlsson S, Pettilä V, et al. Free cortisol in sepsis and septic shock. Anesth Analg. 2008;106(6):1813-9. PMID: 18499615; https://doi.org/10.1213/ane.0b013e318172fdba.

Downloads

Publicado

2021-07-01

Como Citar

1.
Güven M, Gültekin H. Could serum total cortisol level at admission predict mortality due to coronavirus disease 2019 in the intensive care unit? A prospective study. Sao Paulo Med J [Internet]. 1º de julho de 2021 [citado 14º de março de 2025];139(4):398-404. Disponível em: https://periodicosapm.emnuvens.com.br/spmj/article/view/465

Edição

Seção

Artigo Original